Document Type : Original Research

Authors

1 MSc, Department of Physics, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, West Java, 16424, Indonesia

2 MSc, Department of Radiotherapy, Pasar Minggu Regional General Hospital, South Jakarta, Jakarta, 12550, Indonesia

3 PhD, Department of Physics, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, West Java, 16424, Indonesia

10.31661/jbpe.v0i0.2004-1096

Abstract

Background: Many authors stated that cavities or air-gaps were the main challenge of dose calculation for head and neck with flattening filter medical linear accelerator (Linac) irradiation.
Objective: The study aimed to evaluate the effect of air-gap dose calculation on flattening-filter-free (FFF) small field irradiation.
Material and Methods: In this comparative study, we did the experimental and Monte Carlo (MC) simulation to evaluate the presence of heterogeneities in radiotherapy. We simulated the dose distribution on virtual phantom and the patient’s CT image to determine the air-gap effect of open small field and modulated photon beam, respectively. The dose ratio of air-gaps to tissue-equivalent was calculated both in Analytical Anisotropic Algorithm (AAA) and MC.
Results: We found that the dose ratio of air to tissue-equivalent tends to decrease with a larger field size. This correlation was linear with a slope of -0.198±0.001 and -0.161±0.014 for both AAA and MC, respectively. On the other hand, the dose ratio below the air-gap was field size-dependent. The AAA to MC dose calculation as the impact of air-gap thickness and field size varied from 1.57% to 5.35% after the gap. Besides, patient’s skin and oral cavity on head and neck case received a large dose discrepancy according to this study.
Conclusion: The dose air to tissue-equivalent ratio decreased with smaller air gaps and larger field sizes. Dose correction for AAA calculation of open small field size should be considered after small air-gaps. However, delivered beam from others gantry angle reduced this effect on clinical case.

Keywords

  1. Kragl G, Albrich D, Georg D. Radiation therapy with unflattened photon beams: dosimetric accuracy of advanced dose calculation algorithms. Radiother Oncol. 2011;100(3):417-23. doi: 10.1016/j.radonc.2011.09.001. PubMed PMID: 21945857.
  2. Bush K, Gagne IM, Zavgorodni S, Ansbacher W, Beckham W. Dosimetric validation of Acuros XB with Monte Carlo methods for photon dose calculations. Med Phys. 2011;38(4):2208-21. doi: 10.1118/1.3567146. PubMed PMID: 21626955.
  3. Teke T, Duzenli C, Bergman A, Viel F, Atwal P, Gete E. Monte Carlo validation of the TrueBeam 10XFFF phase-space files for applications in lung SABR. Med Phys. 2015;42(12):6863-74. doi: 10.1118/1.4935144. PubMed PMID: 26632043.
  4. Robinson J, Opp D, Zhang G, Feygelman V. Evaluation of inhomogeneity correction factors for 6 MV flattening filter-free beams with brass compensators. J Appl Clin Med Phys. 2013;14(3):3990. doi: 10.1120/jacmp.v14i3.3990. PubMed PMID: 23652238. PubMed PMCID: PMC5714406.
  5. Aarup LR, Nahum AE, Zacharatou C, et al. The effect of different lung densities on the accuracy of various radiotherapy dose calculation methods: implications for tumour coverage. Radiother Oncol. 2009;91(3):405-14. doi: 10.1016/j.radonc.2009.01.008. PubMed PMID: 19297051.
  6. Seif F, Bayatiani MR, Hamidi S, Kargaran M. Investigating the Effect of Air Cavities of Sinuses on the Radiotherapy Dose Distribution Using Monte Carlo Method. J Biomed Phys Eng. 2019;9(1):121-6. doi: 10.31661/JBPE.V9I1FEB.1046. PubMed PMID: 30881941. PubMed PMCID: PMC6409366.
  7. Singh N, Sharma SD, Painuly NK, et al. Underdosing of the maxillary sinus for small fields used in newer radiotherapy techniques: Comparison of thermoluminescent dosimeter and Monte Carlo data. J Cancer Res Ther. 2018;14(2):351-6. doi: 10.4103/0973-1482.183195. PubMed PMID: 29516918.
  8. Lu JY, Zheng J, Zhang WZ, Huang BT. Flattening Filter-Free Beams in Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy for Sinonasal Cancer. PLoS One. 2016;11(1):e0146604. doi: 10.1371/journal.pone.0146604. PubMed PMID: 26734731. PubMed PMCID: PMC4703390.
  9. Jones AO, Das IJ. Comparison of inhomogeneity correction algorithms in small photon fields. Med Phys. 2005;32(3):766-76. doi: 10.1118/1.1861154. PubMed PMID: 15839349.
  10. Izewska J, Wesolowska P, Azangwe G, et al. Testing the methodology for dosimetry audit of heterogeneity corrections and small MLC-shaped fields: Results of IAEA multi-center studies. Acta Oncol. 2016;55(7):909-16. doi: 10.3109/0284186X.2016.1139180. PubMed PMID: 26934916. PubMed PMCID: PMC4926790.
  11. Charles PH, Crowe SB, Kairn T, et al. The effect of very small air gaps on small field dosimetry. Phys Med Biol. 2012;57(21):6947-60. doi: 10.1088/0031-9155/57/21/6947. PubMed PMID: 23044638.
  12. Thwaites DI, Cranmer-Sargison G, Charles PH, Trapp JV. Measurement, modelling and reporting of small field output factors requires systematic approaches for accurate dosimetry. Physica Medica: Eur J Med Phys. 2014;30:e33-4. doi: 10.1016/j.ejmp.2014.07.107.
  13. Razi T, Niknami M, Alavi Ghazani F. Relationship between Hounsfield Unit in CT Scan and Gray Scale in CBCT. J Dent Res Dent Clin Dent Prospects. 2014;8(2):107-10. doi: 10.5681/joddd.2014.019. PubMed PMID: 25093055. PubMed PMCID: PMC4120902.
  14. Azzi A, Ryangga D, Pawiro SA. The characteristics of small field beam quality and output factor of 6 MV FFF. J Phys Conf Ser. 2019;1248(1):012056. doi: 10.1088/1742-6596/1248/1/012056.
  15. Rodriguez M, Sempau J, Fogliata A, Cozzi L, Sauerwein W, Brualla L. A geometrical model for the Monte Carlo simulation of the TrueBeam linac. Phys Med Biol. 2015;60(11):N219-29. doi: 10.1088/0031-9155/60/11/N219. PubMed PMID: 25984796.
  16. Pawiro SA, Azzi A, Soejoko DS. A Monte Carlo Study of Photon Beam Characteristics on Various Linear Accelerator Filters. J Biomed Phys Eng. 2020;10(5):613-22. doi: 10.31661/jbpe.v0i0.1192. PubMed PMID: 33134221. PubMed PMCID: PMC7557471.
  17. Tan YI, Metwaly M, Glegg M, Baggarley S, Elliott A. Evaluation of six TPS algorithms in computing entrance and exit doses. J Appl Clin Med Phys. 2014;15(3):229-40. doi: 10.1120/jacmp.v15i3.4739. PubMed PMID: 24892349. PubMed PMCID: PMC5711058.
  18. Muralidhar KR, Pangam S, Srinivas P, et al. A phantom study on the behavior of Acuros XB algorithm in flattening filter free photon beams. J Med Phys. 2015;40(3):144-9. doi: 10.4103/0971-6203.165076. PubMed PMID: 26500400. PubMed PMCID: PMC4594383.