Document Type : Original Research

Authors

1 PhD, ENT and Head & Neck Research Center and Department, Hazrat Rasoul Hospital, the Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran

2 MD, ENT and Head & Neck Research Center and Department, Hazrat Rasoul Hospital, the Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran

3 MD, Skull Base Research Center, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran

10.31661/jbpe.v0i0.1108

Abstract

Background: Selective targeting of malignant cells is the ultimate goal of anticancer studies around the world. There are some modalities for cancer therapy devastating tumor size and growth rate, meanwhile attacking normal cells. Utilizing appropriate ligands, like folate, allow the delivery of therapeutic molecules to cancer cells selectively. There are a variety of photosensitizers, like gold nanorods (GNRs), capable of absorbing the energy of light and converting it to heat, evidently build a photothermal procedure for cancer therapy.
Objective: To develop a one-step approach for calculating the temperature distribution by solving the heat transfer equation with multiple heat sources originating from NIR laser-exposed GNRs.
Material and Methods: In this experimental study, we simulated NIR laser heating process in a single cancer cell, with and without incubation with folate conjugated PEG-GNRs. This simulation was based on a real TEM image from an experiment with the same setup. An in vitro experiment based on aforesaid scenario was performed to validate the simulated model in practice.
Results: According to the simplifications due to computational resource limits, the resulting outcome of simulation showed significant compatibility to the supporting experiment. Both simulation and experimental studies showed a similar trend for heating and cooling of the cells incubated with GNRs and irradiated by NIR laser (5 min, 1.8 W/cm2). It was observed that temperature of the cells in microplate reached 53.6 °C when irradiated by laser.
Conclusion: This new method can be of great application in developing a planning technique for treating tumors utilizing GNP-mediated thermal therapy.

Keywords

  1. Hosseini V, Mirrahimi M, Shakeri-Zadeh A, Koosha F, Ghalandari B, Maleki S, Komeili A, Kamrava SK. Multimodal cancer cell therapy using Au@ Fe2O3 core–shell nanoparticles in combination with photo-thermo-radiotherapy. Photodiagnosis and Photodynamic Therapy. 2018;24:129-35. doi: 10.1016/j.pdpdt.2018.08.003.
  2. Mirrahimi M, Abed Z, Beik J, Shiri I, Dezfuli AS, Mahabadi VP, Kamrava SK, Ghaznavi H, Shakeri-Zadeh A. A thermo-responsive alginate nanogel platform co-loaded with gold nanoparticles and cisplatin for combined cancer chemo-photothermal therapy. Pharmacological Research. 2019;143:178-85. doi: 10.1016/j.phrs.2019.01.005.
  3. Mirrahimi M, Hosseini V, Shakeri-Zadeh A, Alamzadeh Z, Kamrava SK, Attaran N, Abed Z, Ghaznavi H, Nami SH. Modulation of cancer cells’ radiation response in the presence of folate conjugated Au@ Fe 2 O 3 nanocomplex as a targeted radiosensitizer. Clinical and Translational Oncology. 2019;21(4):479-88. doi: 10.1007/s12094-018-1947-8.
  4. Kurian AW, Bondarenko I, Jagsi R, Friese CR, McLeod MC, Hawley ST, Hamilton AS, Ward KC, Hofer TP, Katz SJ. Recent trends in chemotherapy use and oncologists’ treatment recommendations for early-stage breast cancer. Journal of the National Cancer Institute. 2018;110(5):493-500. doi: 10.1093/jnci/djx239.
  5. Beik J, Asadi M, Mirrahimi M, Abed Z, Farashahi A, Hashemian R, Ghaznavi H, Shakeri-Zadeh A. An image-based computational modeling approach for prediction of temperature distribution during photothermal therapy. Applied Physics B. 2019;125(11):213. doi: 10.1007/s00340-019-7316-7.
  6. Beik J, Asadi M, Khoei S, Laurent S, Abed Z, Mirrahimi M, Farashahi A, Hashemian R, Ghaznavi H, Shakeri-Zadeh A. Simulation-guided photothermal therapy using MRI-traceable iron oxide-gold nanoparticle. Journal of Photochemistry and Photobiology B: Biology. 2019;199:111599. doi: 10.1016/j.jphotobiol.2019.111599.
  7. Zabanran M, Asadi M, Zare-Sadeghi A, Ardakani AA, Shakeri-Zadeh A, Komeili A, Kamrava SK, Ghalandari B. The effects of gold nanoparticles characteristics and laser irradiation conditions on spatiotemporal temperature pattern of an agar phantom: A simulation and MR thermometry study. Optik. 2020;202:163718. doi: 10.1016/j.ijleo.2019.163718.
  8. Asadi M, Beik J, Hashemian R, Laurent S, Farashahi A, Mobini M, Ghaznavi H, Shakeri-Zadeh A. MRI-based numerical modeling strategy for simulation and treatment planning of nanoparticle-assisted photothermal therapy. Physica Medica. 2019;66:124-32. doi: 10.1016/j.ejmp.2019.10.002.
  9. Hashemian AR,Eshghi H, Mansoori GA, Shakeri-Zadeh A, Mehdizadeh AR. Folate-Conjugated Gold Nanoparticles (Synthesis, Characterization and Design for Cancer Cells Nanotechnology-based Targeting). International Journal of Nanoscience and Nanotechnology. 2009;5(1):25-34.
  10. Shakeri-Zadeh A, Eshghi H, Mansoori GA, Hashemian AR. Gold nanoparticles conjugated with folic acid using mercaptohexanol as the linker. Journal Nanotechnology Progress International. 2009;1(1):1-44.
  11. Zeinizade E, Tabei M, Shakeri-Zadeh A, Ghaznavi H, Attaran N, Komeili A, Ghalandari B, Maleki S, Kamrava SK. Selective apoptosis induction in cancer cells using folate-conjugated gold nanoparticles and controlling the laser irradiation conditions. Artificial Cells, Nanomedicine, and Biotechnology. 2018;46(1):1026-38. doi: 10.1080/21691401.2018.1443116.
  12. Movahedi MM, Mehdizadeh A, Koosha F, Eslahi N, Mahabadi VP, Ghaznavi H, Shakeri-Zadeh A. Investigating the photo-thermo-radiosensitization effects of folate-conjugated gold nanorods on KB nasopharyngeal carcinoma cells. Photodiagnosis and Photodynamic Therapy. 2018;24:324-31. doi:10.1016/j.pdpdt.2018.10.016.
  13. Araya T, Kasahara K, Nishikawa S, Kimura H, Sone T, Nagae H, Ikehata Y, Nagano I, Fujimura M. Antitumor effects of inductive hyperthermia using magnetic ferucarbotran nanoparticles on human lung cancer xenografts in nude mice. Onco Targets and Therapy. 2013;6:237. doi: 10.2147/OTT.S42815. PubMed PMID: 23569387. PubMed PMCID: PMC3615880.
  14. Beik J, Jafariyan M, Montazerabadi A, Ghadimi-Daresajini A, Tarighi P, Mahmoudabadi A, Ghaznavi H, Shakeri-Zadeh A. The benefits of folic acid-modified gold nanoparticles in CT-based molecular imaging: radiation dose reduction and image contrast enhancement. Artificial Cells, Nanomedicine, and Biotechnology. 2018;46(8):1993-2001. doi: 10.1080/21691401.2017.1408019.
  15. Cheong KH, Yi DK, Lee JG, Park JM, Kim MJ, Edel JB, Ko C. Gold nanoparticles for one step DNA extraction and real-time PCR of pathogens in a single chamber. Lab on a Chip. 2008;8(5):810-3. doi: 10.1039/b717382b. PubMed PMID: 18432353.
  16. Cao SW, Fang J, Shahjamali MM, Wang Z, Yin Z, Yang Y, Boey FY, Barber J, Loo SC, Xue C. In situ growth of Au nanoparticles on Fe 2 O 3 nanocrystals for catalytic applications. Cryst Eng Comm. 2012;14(21):7229-35. doi: 10.1039/C2CE25746G.
  17. Carslow HS, Jaeger JC. Conduction of heat in solids. Oxford University Press; 1986.
  18. Cheong SK, Krishnan S, Cho SH. Modeling of plasmonic heating from individual gold nanoshells for near-infrared laser-induced thermal therapy. Medical Physics. 2009;36(10):4664-71. doi: 10.1118/1.3215536.
  19. Draine BT, Flatau PJ. Discrete-dipole approximation for scattering calculations. J Opt Soc Am A. 1994;11(4):1491-9. doi: 10.1364/JOSAA.11.001491.
  20. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. The Journal of Physical Chemistry B. 2006;110(14):7238-48. doi: 10.1021/jp057170o.
  21. Zhu X, Feng W, Chang J, Tan YW, Li J, Chen M, Sun Y, Li F. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nature Communications. 2016;7:10437. doi: 10.1038/ncomms10437.
  22. Sönnichsen C, Franzl T, Wilk T, Von G, Plessen, J. Feldmann, Wilson O, Mulvaney P. Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett. 2002;88(7):077402. doi: 10.1103/PhysRevLett.88.077402. PubMed PMID: 11863939.
  23. Bohren CF, Huffman DR. Absorption and scattering of light by small particles. Weinheim, Germany: Wiley Online Library; 1998. doi: 10.1002/9783527618156.
  24. Xu Z. Optical Properties of Metal Clusters By Uwe Kreibig (I. Physikalisches Inst. der RWTH Aachen, Gmermany) and Michael Vollmer (Technische Physik Brandenburg, Germany). Springer: New York. 1994. xvii+ 532 pp. $69.00. ISBN 0-387-57836-6. J Am Chem Soc. 1996;118(25):6098. doi: 10.1021/ja955378p.
  25. Mehdizadeh AR, Pandesh S, Shakeri-Zadeh A, Kamrava SK, Habib-Agahi M, Farhadi M, Pishghadam M, Ahmadi A, Arami S, Fedutik Y. The effects of folate-conjugated gold nanorods in combination with plasmonic photothermal therapy on mouth epidermal carcinoma cells. Lasers in Medical Science. 2014;29(3):939-48. doi: 10.1007/s10103-013-1414-2. PubMed PMID: 24013622.