Document Type : Original Research


1 PhD, Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

2 PhD, Department of Clinical Oncology, Faculty of Medicine, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

3 PhD, Department of Radiology, Paramedical school, Hamadan University of Medical Sciences, Hamadan, Iran

4 MD, Department of Clinical Oncology, Faculty of Medicine, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

5 PhD, Department of Medical Physics, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran



Background: It is recommended for each set of radiation data and algorithm that subtle deliberation is done regarding dose calculation accuracy. Knowing the errors in dose calculation for each treatment plan will result in an accurate estimate of the actual dose achieved by the tumor.
Objective: This study aims to evaluate the equivalent path length (EPL) and equivalent tissue air ratio (ETAR) algorithms in radiation dose calculation.
Material and Methods: In this experimental study, the TEC-DOC 1583 guideline was used. Measurements and calculations were obtained for each algorithm at specific points in thorax CIRS phantom for 6 and 18 MVs and results were compared.
Results: In the EPL, calculations were in agreement with measurements for 27 points and differences between them ranged from 0.1% to 10.4% at 6 MV. The calculations were in agreement with measurements for 21 points and differences between them ranged from 0.4% to 13% at 18 MV. In ETAR, calculations were also in consistent with measurements for 21 points, and differences between them ranged from 0.1% to 9% at 6 MV. Moreover, for 18 MV, the calculations were in agreement with measurements for 17 points and differences between them ranged from 0% to 11%.
Conclusion: For the EPL algorithm, more dose points were in consistent with acceptance criteria. The errors in the ETAR were 1% to 2% less than the EPL. The greatest calculation error occurs in low-density lung tissue with inhomogeneities or in high-density bone. Errors were larger in shallow depths. The error in higher energy was more than low energy beam.


  1. Herrick AC. A comparative dosimetric analysis of the effect of heterogeneity corrections used in three treatment planning algorithms. Electronic Thesis or Dissertation; University of Toledo; 2010. Available from:
  2. Ahnesjo A, Aspradakis MM. Dose calculations for external photon beams in radiotherapy. Phys Med Biol. 1999;44:R99-155. PubMed PMID: 10588277.
  3. Woon YL, Heng S, Wong J, Ung NM. Comparison of selected dose calculation algorithms in radiotherapy treatment planning for tissues with inhomogeneities. J Phys: Conf Ser. 2016;694(1):1-5. doi: 10.1088/1742-6596/694/1/012024.
  4. Krieger T, Sauer OA. Monte Carlo- versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom. Phys Med Biol. 2005;50:859-68. doi: 10.1088/0031-9155/50/5/010. PubMed PMID: 15798260.
  5. Zhu XR, Low DA, Harms WB, Purdy JA. A convolution-adapted ratio-TAR algorithm for 3D photon beam treatment planning. Med Phys. 1995;22:1315-27. doi: 10.1118/1.597516. PubMed PMID: 7476719.
  6. Yorke E, Harisiadis L, Wessels B, Aghdam H, Altemus R. Dosimetric considerations in radiation therapy of coin lesions of the lung. Int J Radiat Oncol Biol Phys. 1996;34:481-7. doi: 10.1016/0360-3016(95)02036-5. PubMed PMID: 8567352.
  7. Rutonjski L, Petrovic B, Baucal M, Teodorovic M, Cudic O, Gershkevitsh E, et al. Dosimetric verification of radiotherapy treatment planning systems in Serbia: national audit. Radiat Oncol. 2012;7:155. doi: 10.1186/1748-717X-7-155. PubMed PMID: 22971539. PubMed PMCID: PMC3504524.
  8. Orton CG, Chungbin S, Klein EE, Gillin MT, Schultheiss TE, Sause WT. Study of lung density corrections in a clinical trial (RTOG 88-08). Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys. 1998;41:787-94. doi: 10.1016/s0360-3016(98)00117-5. PubMed PMID: 9652839.
  9. Lopes MC, Cavaco A, Jacob K, Madureira L, Germano S, Faustino S, et al. Treatment planning systems dosimetry auditing project in Portugal. Phys Med. 2014;30:96-103. doi: 10.1016/j.ejmp.2013.03.008. PubMed PMID: 23623589.
  10. Klein EE, Morrison A, Purdy JA, Graham MV, Matthews J. A volumetric study of measurements and calculations of lung density corrections for 6 and 18 MV photons. Int J Radiat Oncol Biol Phys. 1997;37:1163-70. doi: 10.1016/s0360-3016(97)00110-7. PubMed PMID: 9169827.
  11. Gershkevitsh E, Schmidt R, Velez G, Miller D, Korf E, Yip F, et al. Dosimetric verification of radiotherapy treatment planning systems: results of IAEA pilot study. Radiother Oncol. 2008;89:338-46. doi: 10.1016/j.radonc.2008.07.007. PubMed PMID: 18701178.
  12. Engelsman M, Damen EM, Koken PW, Van‘t Veld AA, Van Ingen KM, Mijnheer BJ. Impact of simple tissue inhomogeneity correction algorithms on conformal radiotherapy of lung tumours. Radiother Oncol. 2001;60:299-309. PubMed PMID: 11514010.
  13. El-Khatib EE, Evans M, Pla M, Cunningham JR. Evaluation of lung dose correction methods for photon irradiations of thorax phantoms. Int J Radiat Oncol Biol Phys. 1989;17:871-8. doi: 10.1016/0360-3016(89)90081-3. PubMed PMID: 2777679.
  14. De Jaeger K, Hoogeman MS, Engelsman M, Seppenwoolde Y, Damen EM, Mijnheer BJ, et al. Incorporating an improved dose-calculation algorithm in conformal radiotherapy of lung cancer: re-evaluation of dose in normal lung tissue. Radiother Oncol. 2003;69:1-10. doi: 10.1016/s0167-8140(03)00195-6. PubMed PMID: 14597351.
  15. Alam R, Ibbott GS, Pourang R, Nath R. Application of AAPM Radiation Therapy Committee Task Group 23 test package for comparison of two treatment planning systems for photon external beam radiotherapy. Med Phys. 1997;24:2043-54. doi: 10.1118/1.598119. PubMed PMID: 9434989.
  16. Aarup LR, Nahum AE, Zacharatou C, Juhler-Nottrup T, Knoos T, Nystrom H, et al. The effect of different lung densities on the accuracy of various radiotherapy dose calculation methods: implications for tumour coverage. Radiother Oncol. 2009;91:405-14. doi: 10.1016/j.radonc.2009.01.008. PubMed PMID: 19297051.
  17. Meredith WJ, Neary G. The production of isodose curves and the calculation of energy absorption from standard depth dose data. The British Journal of Radiology. 1944;17:75-82. doi: 10.1259/0007-1285-17-195-75.
  18. Liu Q, Liang J, Stanhope CW, Yan D. The effect of density variation on photon dose calculation and its impact on intensity modulated radiotherapy and stereotactic body radiotherapy. Med Phys. 2016;43:5717. doi: 10.1118/1.4963207. PubMed PMID: 27782711.
  19. Breitman K, Rathee S, Newcomb C, Murray B, Robinson D, Field C, et al. Experimental validation of the Eclipse AAA algorithm. J Appl Clin Med Phys. 2007;8:76-92. doi: 10.1120/jacmp.v8i2.2350. PubMed PMID: 17592457. PubMed PMCID: PMC5722411.
  20. Craig J, Oliver M, Gladwish A, Mulligan M, Chen J, Wong E. Commissioning a fast Monte Carlo dose calculation algorithm for lung cancer treatment planning. J Appl Clin Med Phys. 2008;9:2702. PubMed PMID: 18714276. PubMed PMCID: PMC5721711.
  21. International Atomic Energy Agency. Commissioning of radiotherapy treatment planning systems: Testing for typical external beam treatment techniques. IAEA Tecdoc Series No. 1583; Vienna: IAEA; 2008. p. 1-67.
  22. Batho HF. Lung Corrections in Cobalt 60 Beam Therapy. J Can Assoc Radiol. 1964;15:79-83. PubMed PMID: 14173312.
  23. Sontag MR, Cunningham JR. Clinical application of a CT based treatment planning system. Comput Tomogr. 1978;2:117-30. doi: 10.1016/0363-8235(78)90009-1. PubMed PMID: 699542.
  24. Sontag MR, Cunningham JR. The equivalent tissue-air ratio method for making absorbed dose calculations in a heterogeneous medium. Radiology. 1978;129:787-94. doi: 10.1148/129.3.787. PubMed PMID: 725060.
  25. Purdy JA. Photon Dose Calculations for Three-Dimensional Radiation Treatment Planning. Semin Radiat Oncol. 1992;2:235-45. doi: 10.1053/SRAO00200235. PubMed PMID: 10717040.
  26. Cunningham JR. Scatter-air ratios. Phys Med Biol. 1972;17:42-51. PubMed PMID: 5071500.
  27. Greene D, Stewart JG. Isodose Curves in Non-Uniform Phantoms. Br J Radiol. 1965;38:378-85. doi: 10.1259/0007-1285-38-449-378. PubMed PMID: 14280292.
  28. Purdy J, Prasad S. Current methods and algorithms in radiation absorbed dose calculation and the role of computed tomography: A review. United States; Raven Press Publications; 1983.
  29. Sundbom L. Dose planning for irradiation of thorax with 60-Co in fixed-beam teletherapy. Acta Radiol Ther Phys Biol. 1965;3:342-52. doi: 10.3109/02841866509133109. PubMed PMID: 5838014.
  30. O’Connor JE. The variation of scattered x-rays with density in an irradiated body. Phys Med Biol. 1957;1:352-69. doi: 10.1088/0031-9155/1/4/305. PubMed PMID: 13452841.
  31. International Atomic Energy Agency. Specification and acceptance testing of radiotherapy treatment planning systems. IAEA Tecdoc Series No. 1540; Vienna, Austria: IAEA; 2007.
  32. Asnaashari K, Nodehi MR, Mahdavi SR, Gholami S, Khosravi HR. Dosimetric comparison of different inhomogeneity correction algorithms for external photon beam dose calculations. J Med Phys. 2013;38:74-81. doi: 10.4103/0971-6203.111310. PubMed PMID: 23776310. PubMed PMCID: PMC3683304.