Document Type : Original Research

Authors

1 PhD, Medical Physics Research Center, Mashhad University of Medical Science, Mashhad, Iran

2 MSc, Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran

3 PhD, Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran

4 MD, PhD, Ionizing and non-Ionizing Radiation Protection Research Center, Shiraz University of Medical Science, Shiraz, Iran

10.31661/jbpe.v0i0.2001-1051

Abstract

Background: Radiotherapy has become a part of therapeutic process of more than 50 percent of patients suffering from cancer. However, recent studies have shown that radiation therapy might affect the expression of adhesive molecule related genes such as E-cadherin and cause cancer cells to move and migrate. Besides, various studies have reported that the expression of E-cadherin changes differently after radiation treatment. There are several studies which showed the loss of E-cadherin function after radiation; however, this reduction has not been observed in others.
Objective: This study aims to investigate the effect of different radiation doses of X-ray on changes that might occur in the expression of E-cadherin gene in colorectal cancer cell line HT-29.
Material and Methods: In this experimental study, the cells cultured in flasks were irradiated with X- rays in different doses, including 0.1, 2.5, 5, and 10 Gy; then, the expression of E-cadherin gene was measured using real-time PCR.
Results: The expression of E-cadherin did not change significantly in post-irradiated HT-29 cell line after different radiation doses of X-ray.
Conclusion: The results showed that low, medium and high doses of X- radiation did not change the expression of E-cadherin gene in HT-29 cancer cells. However, it has been reported that radiation mostly downregulated the expression of E-cadherin and mediated metastasis formation and invasiveness in different cancer cell lines. Therefore, further studies need to be conducted to investigate the effects of radiation dose on the molecular pathways contributing to regulation of E-cadherin in HT-29 cell line.

Keywords

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2018;68(6):394-424. doi: 10.3322/caac.21492. PubMed PMID: 30207593.
  2. Zare-Bandamiri M, Fararouei M, Zohourinia S, Daneshi N, Dianatinasab M. Risk factors predicting colorectal cancer recurrence following initial treatment: a 5-year cohort study. Asian Pacific Journal of Cancer Prevention. 2017;18(9):2465. doi: 10.22034/APJCP.2017.18.9.2465.
  3. Kawamoto A, Yokoe T, Tanaka K, Saigusa S, Toiyama Y, Yasuda H, Inoue Y, Miki C, Kusunoki M. Radiation induces epithelial-mesenchymal transition in colorectal cancer cells. Oncology Reports. 2012;27(1):51-7. doi: 10.3892/or.2011.1485.
  4. Lagadec C, Vlashi E, Della Donna L, Dekmezian C, Pajonk F. Radiation-induced reprogramming of breast cancer cells. Stem Cells. 2012;30(5):833-44. doi: 10.1002/stem.1058. PubMed PMID: 22489015. PubMed PMCID: PMC3413333.
  5. Madani I, De Neve W, Mareel M. Does ionizing radiation stimulate cancer invasion and metastasis? Bull Cancer. 2008;95(3):292-300. doi: 10.1684/bdc.2008.0598. PubMed PMID: 18390409.
  6. Moncharmont C, Levy A, Guy JB, Falk AT, et al. Radiation-enhanced cell migration/invasion process: a review. Critical Reviews in Oncology/Hematology. 2014;92(2):133-42. doi: 10.1016/j.critrevonc.2014.05.006. PubMed PMID: 24908570.
  7. Young AG, Bennewith KL. Ionizing radiation enhances breast tumor cell migration in vitro. Radiation Research. 2017;188(4):381-91. doi: 10.1667/RR14738.1. PubMed PMID: 28763286.
  8. Zhang H, Luo H, Jiang Z, Yue J, Hou Q, Xie R, Wu S. Fractionated irradiation-induced EMT-like phenotype conferred radioresistance in esophageal squamous cell carcinoma. Journal of Radiation Research. 2016;57(4):370-80. doi: 10.1093/jrr/rrw030. PubMed PMID: 27125498. PubMed PMCID: PMC4973649.
  9. Baluna RG, Eng TY, Thomas Jr CR. Adhesion molecules in radiotherapy. Radiation Research. 2006;166(6):819-31. doi: 10.1667/RR0380.1. PubMed PMID: 17149971.
  10. Birchmeier W, Behrens J. Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 1994;1198(1):11-26. doi: 10.1016/0304-419x(94)90003-5. PubMed PMID: 8199193.
  11. Van Roy F, Berx G. The cell-cell adhesion molecule E-cadherin. Cellular and Molecular Life Sciences. 2008;65(23):3756-88. doi: 10.1007/s00018-008-8281-1. PubMed PMID: 18726070.
  12. Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J, De Herreros AG. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature Cell Biology. 2000;2(2):84-9. doi: 10.1038/35000034. PubMed PMID: 10655587.
  13. Christofori G, Semb H. The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends in Biochemical Sciences. 1999;24(2):73-6. doi: 10.1016/s0968-0004(98)01343-7. PubMed PMID: 10098402.
  14. Marcucci F, Stassi G, De Maria R. Epithelial–mesenchymal transition: a new target in anticancer drug discovery. Nature Reviews Drug Discovery. 2016;15(5):311. doi: 10.1038/nrd.2015.13. PubMed PMID: 26822829.
  15. Melissaridou S, Wiechec E, Magan M, Jain MV, Chung MK, Farnebo L, Roberg K. The effect of 2D and 3D cell cultures on treatment response, EMT profile and stem cell features in head and neck cancer. Cancer Cell International. 2019;19(1):16. doi: 10.1186/s12935-019-0733-1. PubMed PMID: 30651721. PubMed PMCID: PMC6332598.
  16. Berx G, Van Roy F. The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Research. 2001;3(5):289. doi: 10.1186/bcr309. PubMed PMID: 11597316. PubMed PMCID: PMC138690.
  17. Akimoto T, Mitsuhashi N, Saito Y, Ebara T, Niibe H. Effect of radiation on the expression of E-cadherin and α-catenin and invasive capacity in human lung cancer cell line in vitro. International Journal of Radiation Oncology Biology Physics. 1998;41(5):1171-6. doi: 10.1016/s0360-3016(98)00176-x. PubMed PMID: 9719129.
  18. Ebara T, Mitsuhashi N, Saito Y, Akimoto T, Niibe H. Change in E-cadherin expression after X-ray irradiation of a human cancer cell line in vitro and in vivo. Int J Radiat Oncol Biol Phys. 1998;41(3):669-74. doi: 10.1016/s0360-3016(98)00096-0. PubMed PMID: 9635718.
  19. Tahmasebi-Birgani MJ, Teimoori A, Ghadiri A, Mansoury-Asl H, Danyaei A, Khanbabaei H. Fractionated radiotherapy might induce epithelial-mesenchymal transition and radioresistance in a cellular context manner. Journal of Cellular Biochemistry. 2019;120(5):8601-10. doi: 10.1002/jcb.28148. PubMed PMID: 30485518.
  20. Yan S, Wang Y, Yang Q, Li X, Kong X, Zhang N, Yuan C, Yang N, Kong B. Low-dose radiation-induced epithelial-mesenchymal transition through NF-κB in cervical cancer cells. International Journal of Oncology. 2013;42(5):1801-6. doi: 10.3892/ijo.2013.1852. PubMed PMID: 23483258.
  21. Zang C, Liu X, Li B, He Y, Jing S, He Y, Wu W, Zhang B, Ma S, Dai W, Li S. IL-6/STAT3/TWIST inhibition reverses ionizing radiation-induced EMT and radioresistance in esophageal squamous carcinoma. Oncotarget. 2017;8(7):11228. doi: 10.18632/oncotarget.14495. PubMed PMID: 28061440. PubMed PMCID: PMC5355260.
  22. Zhang X, Li X, Zhang N, Yang Q, Moran MS. Low doses ionizing radiation enhances the invasiveness of breast cancer cells by inducing epithelial–mesenchymal transition. Biochemical and Biophysical Research Communications. 2011;412(1):188-92. doi: 10.1016/j.bbrc.2011.07.074. PubMed PMID: 21810413.
  23. Kim RK, Cui YH, Yoo KC, Kim IG, Lee M, Choi YH, Suh Y, Lee SJ. Radiation promotes malignant phenotypes through SRC in breast cancer cells. Cancer Science. 2015;106(1):78-85. doi: 10.1111/cas.12574. PubMed PMID: 25533622. PubMed PMCID: PMC4317785.
  24. Kim RK, Kaushik N, Suh Y, Yoo KC, Cui YH, Kim MJ, Lee HJ, Kim IG, Lee SJ. Radiation driven epithelial-mesenchymal transition is mediated by Notch signaling in breast cancer. Oncotarget. 2016;7(33):53430. doi: 10.18632/oncotarget.10802. PubMed PMID: 27462787. PubMed PMCID: PMC5288197.
  25. Christou N, Perraud A, Blondy S, Jauberteau MO, Battu S, Mathonnet M. E‑cadherin: A potential biomarker of colorectal cancer prognosis. Oncology Letters. 2017;13(6):4571-6. doi: 10.3892/ol.2017.6063. PubMed PMID: 28588719. PubMed PMCID: PMC5452924.
  26. Theys J, Jutten B, Habets R, Paesmans K, Groot AJ, Lambin P, Wouters BG, Lammering G, Vooijs M. E-Cadherin loss associated with EMT promotes radioresistance in human tumor cells. Radiotherapy and Oncology. 2011;99(3):392-7. doi: 10.1016/j.radonc.2011.05.044. PubMed PMID: 21680037. PubMed PMCID: PMC4948667.
  27. Ikeguchi M, Makino M, Kaibara N. Clinical significance of E–cadherin–catenin complex expression in metastatic foci of colorectal carcinoma. Journal of Surgical Oncology. 2001;77(3):201-7. doi: 10.1002/jso.1095. PubMed PMID: 11455558.
  28. Xiong H, Hong J, Du W, Lin YW, Ren LL, Wang YC, Su WY, Wang JL, Cui Y, Wang ZH, Fang JY. Roles of STAT3 and ZEB1 proteins in E-cadherin down-regulation and human colorectal cancer epithelial-mesenchymal transition. Journal of Biological Chemistry. 2012;287(8):5819-32. doi: 10.1074/jbc.M111.295964. PubMed PMID: 22205702. PubMed PMCID: PMC3285352.