Document Type: Original Research

Authors

1 PhD, Department of Biomedical and Dental Sciences and Morphofunctional Imaging (BIOMORF), University of Messina, Italy

2 MSc, Department of Mathematical and Computational Sciences, Physics Sciences and Earth Sciences, (MIFT) University of Messina, Italy

3 MSc, Odontomed - Soverato, Italy

4 MSc, Forensic Science Investigation, Carabinieri Section Messina, Italy

10.31661/jbpe.v0i0.2001-1061

Abstract

Background: Periodic quality control (QC) procedures are important in order to guarantee the image quality of radiological equipment and are also conducted using phantoms simulating human body.
Objective: To perform (QC) measurements in intraoral imaging devices, a new and simple phantom was manufactured. Besides, to simplify QC procedures, computerized LabView-based software has been devised, enabling determination of image quantitative parameters in real time or during post processing.
Material and Methods: In this experimental study, the novel developed phantom consists of a Polymethyl methacrylate (PMMA) circular insert. It is able to perform a complete QC image program of X-ray intraoral equipment and also causes the evaluation of image uniformity, high and low contrast spatial resolution, image linearity and artefacts, with only two exposures.
Results: Three raters analyzed the images using the LabView dedicated software and determined the quantitative and qualitative parameters in an innovative and accurate way. Statistical analysis evaluated the reliability of this study. Good accuracy of the quantitative and qualitative measurements for the different intraoral systems was obtained and no statistical differences were found using the inter-rater analysis.
Conclusion: The achieved results and the related statistical analysis showed the validity of this methodology, which could be proposed as an alternative to the commonly adopted procedures, and suggested that the novel phantom, coupled with the LabView based software, could be considered as an effective tool to carry out a QC image program in a reproducible manner.

Keywords

  1. Judy PF, Balter S, Bassano D, McCullough EC, Payne JT, Rothenberg L. Phantoms for performance evaluation and quality assurance of CT scanners. AAPM Report No. 1; Chicago (IL): American Association of Physicists in Medicine; 1977.
  2. Och JG, Clarke GD, Sobol WT, Rosen CW, Mun SK. Acceptance testing of magnetic resonance imaging systems: report of AAPM Nuclear Magnetic Resonance Task Group No. 6. Med Phys. 1992;19(1):217-29. doi: 10.1118/1.596903. PubMed PMID: 1620053.
  3. Amendoeira I, et al. European guidelines for quality assurance in breast cancer screening and diagnosis. Belgium: European Commission; 2013. p. 55-71.
  4. Goodsitt MM, Carson PL, Witt S, Hykes DL, Kofler JM. Real-time B-mode ultrasound quality control test procedures. Report of AAPM Ultrasound Task Group No. 1. Med Phys. 1998;25(8):1385-406. doi: 10.1118/1.598404. PubMed PMID: 9725125.
  5. Acri G, Tripepi MG, Causa F, Testagrossa B, Novario R, Vermiglio G. Slice-thickness evaluation in CT and MRI: an alternative computerised procedure. Radiol Med. 2012;117(3):507-18. doi: 10.1007/s11547-011-0775-5. PubMed PMID: 22228130.
  6. Boone JM, Cody DD, Fisher JR, Frey GD, Glasser H, Gray JE, Haus AG, et al. Quality control in diagnostic radiology. AAPM Report No. 74; Madison (WI): American Association of Physicists in Medicine; 2002.
  7. Walker TF, Mah P, Dove SB, McDavid WD. Digital intraoral radiographic quality assurance and control in private practice. General Dentistry. 2014;62(5):22-9. PubMed PMID: 25184710.
  8. Hatziioannou K, Psarouli E, Papanastassiou E, Bousbouras P, et al. Quality control and diagnostic reference levels in intraoral dental radiographic facilities. Dentomaxillofacial Radiology. 2005;34(5):304-7. doi: 10.1259/dmfr/38802780. PubMed PMID: 16120881.
  9. Cederberg R. Intraoral digital radiography: elements of effective imaging. Compend Contin Educ Dent. 2012;33(9):656. PubMed PMID: 23030728.
  10. National Council on Radiological Protection and Measurement. Radiation protection in dentistry. NCRP Report No. 145; Bethesda (MD): NCRP; 2003.
  11. Kwan AL, Ching H, Gray JE, Massoth RJ, McDavid WD, Platin E, et al. Acceptance Testing and Qual- ity Control of Dental Imaging Equipment. AAPM Report No. 175; Alexandria (VA): American Association of Physicists in Medicine; 2016.
  12. Udupa H, Mah P, Dove SB, McDavid WD. Evaluation of image quality parameters of representative intraoral digital radiographic systems. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116(6):774-83. doi: 10.1016/j.oooo.2013.08.019. PubMed PMID: 24237729.
  13. Sanderink GC, Miles DA. Intraoral detectors. CCD, CMOS, TFT, and other devices. Dental Clinics of North America. 2000;44(2):249-55. PubMed PMID: 10740767.
  14. Paurazas SB, Geist JR, Pink FE, et al. Comparison of digital imaging using CCD and CMOS-APS sensors with E-spead film in the detection of periapical bony lesions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89:356-62. doi: 10.1016/s1079-2104(00)70102-8. PubMed PMID: 10710463.
  15. Kashima I. Computed radiography with photostimulable phosphor in oral and maxillofacial radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;80(5):577-98. doi: 10.1016/S1079-2104(05)80155-6. PubMed PMID: 8556466.
  16. Sonoda M, Takano M, Miyahara J, Kato H. Computed radiography utilizing scanning laser stimulated luminescence. Radiology. 1983;148(3):833-8. doi: 10.1148/radiology.148.3.6878707. PubMed PMID: 6878707.
  17. Bonanno L, Marino S, Morabito R, Barbalace G, et al. Evaluation of US and MRI techniques for carotid stenosis: a novel phantom approach. Radiol Med. 2019;124(5):368-74. doi: 10.1007/s11547-018-0971-7. PubMed PMID: 30542910.
  18. Mah P, McDavid WD, Dove SB. Quality assurance phantom for digital dental imaging. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112(5):632-9. doi: 10.1016/j.tripleo.2011.05.015. PubMed PMID: 21862364.
  19. Yakoumakis EN, Tierris CE, Stefanou EP, et al. Image quality assessment and radiation doses in in- traoral radiography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;91(3):362-8. doi: 10.1067/moe.2001.111940.
  20. Yoshiura K, Kawazu T, Chikui T, Tatsumi M, Tokumori K, Tanaka T, Kanda S. Assessment of image quality in dental radiography, part 1: phantom validity. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;87(1):115-22. doi: 10.1016/s1079-2104(99)70304-5. PubMed PMID: 9927090.
  21. Dashpuntsag O, Yoshida M, Kasai R, et al. Numerical evaluation of image contrast for thicker and thinner objects among current intraoral digital imaging systems. Biomed Res Int. 2017;2017:5215413. doi: 10.1155/2017/5215413. PubMed PMID: 28497053. PubMed PMCID: PMC5401743.
  22. Pittayapat P, Oliveira-Santos C, Thevissen P, et al. Image quality assessment and medical physics evaluation of different portable dental X-ray units. Forensic Science International. 2010;201(1-3):112-7. doi: 10.1016/j.forsciint.2010.04.041. PubMed PMID: 20554135.
  23. Collamati L, Filippetti F, Franceschini G, Pirani S, Tassoni C. Induction machine stator fault on-line diagnosis based on LabVIEW environment. Proceedings of 8th Mediterranean Electrotechnical Conference on Industrial Applications in Power Systems, Computer Science and Telecommunications (MELECON 96); Bari, Italy: IEEE; 1996. p. 495-8.
  24. National Instrument. LabVIEW TM User Manual. April 2003. Available from: https://www.ni.com/pdf/manuals/320999e.pdf.
  25. Elliott C, Vijayakumar V, Zink W, Hansen R. National instruments LabVIEW: a programming environment for laboratory automation and measurement. JALA. 2007;12(1):17-24. doi: 10.1016/j.jala.2006.07.012.
  26. Acri G, Testagrossa B, Sestito A, Bonanno L, Vermiglio G. CT and MRI slice separation evaluation by LabView developed software. Zeitschrift für Medizinische Physik. 2018;28(1):6-13. doi: 10.1016/j.zemedi.2017.09.009.
  27. Gulliksrud K, Stokke C, Martinsen AC. How to measure CT image quality: variations in CT-numbers, uniformity and low contrast resolution for a CT quality assurance phantom. Physica Medica. 2014;30(4):521-6. doi: 10.1016/j.ejmp.2014.01.006. PubMed PMID: 24530005.
  28. Racine D, Viry A, Becce F, Schmidt S, et al. Objective comparison of high-contrast spatial resolution and low-contrast detectability for various clinical protocols on multiple CT scanners. Med Phys. 2017;44(9):e153-63. doi: 10.1002/mp.12224. PubMed PMID: 28901621.
  29. Vermiglio G, Testagrossa B, Acri G, Tripepi MG, Marino S, Bramanti P. MRI and CT Slice Thickness Evaluation by Computerized Dedicated Procedures. World Congress on Medical Physics and Biomedical Engineering; Munich, Germany: Springer; 2009 p. 924-7. doi: 10.1007/978-3-642-03474-9-259.
  30. Price RR, Axel L, Morgan T, Newman R, Perman W, Schneiders N, et al. Quality assurance methods and phantoms for magnetic resonance imaging: report of AAPM nuclear magnetic resonance Task Group No. 1. Med Phys. 1990;17(2):287-95. doi: 10.1118/1.596566. PubMed PMID: 2333055.
  31. Erasmus LJ, Hurter D, Naudé M, Kritzinger HG, Acho S. A short overview of MRI artefacts. South African Journal of Radiology. 2004;8(2)13-7. doi: 10.4102/sajr.v8i2.127.
  32. MathWorks [Internet]. Lilliefors test – MATLAB lillietest – MathWorks Italia; 2019 Feb 13 [cited 2019 Mar 11]. Available from: https://it.mathworks.com/help/stats/lillietest.html.
  33. Hogg RV, Ledolter J. Engineering Statistics. New York: MacMillan; 1987. p. 442.
  34. MathWorks [Internet]. One-way analysis of variance – MATLAB anova1 – MathWorks Italia; 2019 Feb 15 [cited 2019 Mar 11]. Available from: https://it.mathworks.com/help/stats/anova1.html.
  35. Hochberg Y, A Tamhane. Multiple Comparison Procedures. Hoboken, NJ: John Wiley; 1987.
  36. MathWorks [Internet]. Multiple comparison test - MATLAB multcompare - MathWorks Italia; 2019 Feb 13 [cited 2019 Mar 11]. Available from: https://it.mathworks.com/help/stats/multcompare.html.
  37. Fleiss JL, Cohen J. The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educational and Psychological Measurement. 1973;33(3):613-9. doi: 10.1177/001316447303300309.