Document Type: Original Research

Authors

1 PhD Candidate, Department of Radiation Oncology, Tenon Hospital, 75020 Paris, France

2 PhD Candidate, Faculty of Medicine, University of Paris-Saclay, 94276 Le Kremlin-Bicêtre, France

3 PhD Candidate, Department of Radiology, Tenon Hospital, 75020 Paris, France

4 PhD Candidate, Affidea, International Medical Centers, Center for Radiotherapy, 78000 Banja Luka, Bosnia and Herzegovina

5 MSc, Department of Radiology, Tenon Hospital, 75020 Paris, France

6 MD, Department of Radiology, Tenon Hospital, 75020 Paris, France

7 PhD, Department of Radiology, Tenon Hospital, 75020 Paris, France

8 PhD, Department of Radiation Oncology, Tenon Hospital, 75020 Paris, France

10.31661/jbpe.v0i0.2009-1173

Abstract

Background: The use of imaging is indispensable in modern radiation therapy, both for simulation and treatment delivery. For safe and sure utilization, dose delivery from imaging must be evaluated.
Objective: This study aims to investigate the dose to organ at risk (OAR) delivered by imaging during lung stereotactic body radiation therapy (SBRT) and to evaluate its contribution to the treatment total dose.
Material and Methods: In this retrospectively study, imaging total dose to organs at risk (OARs) (spinal cord, esophagus, lungs, and heart) and effective dose were retrospectively evaluated from 100 consecutive patients of a single institution who had lung SBRT. For each patient, dose was estimated using Monte-Carlo convolution for helical computed tomography (helical CT), Four-Dimensional CT (4D-CT), and kilovoltage Cone-Beam CT (kV-CBCT). Helical CT and kV-CBCT dose were evaluated for the entire thorax acquisition, while 4D-CT dose was analyzed on upper lobe (UL) or lower lobe (LL) acquisition. Treatment dose was extracted from treatment planning system and compared to imaging total dose.
Results: Imaging total dose maximum values were 117 mGy to the spinal cord, 127 mGy to the esophagus, 176 mGy to the lungs and 193 mGy to the heart. The maximum effective dose was 19.65 mSv for helical CT, 10.62 mSv for kV-CBCT, 25.95 mSv and 38.45 mSv for 4D-CT in UL and LL regions, respectively. Depending on OAR, treatment total dose was higher from 1.7 to 8.2 times than imaging total dose. Imaging total dose contributed only to 0.3% of treatment total dose.
Conclusion: Imaging dose delivered with 4D-CT to the OARs is higher than those of others modalities. The heart received the highest imaging dose for both UL and LL. Total imaging dose is negligible since it contributed only to 0.3% of treatment total dose.

Keywords

  1. Abreu CE, Ferreira PP, De Moraes FY, et al. Stereotactic body radiotherapy in lung cancer: an update. J Bras Pneumol. 2015;41(4):376-87. doi: 10.1590/S1806-37132015000000034. PubMed PMID: 26398758. PubMed PMCID: PMC4635958.
  2. Lambrecht M, Sonke JJ, Nestle U, et al. Quality assurance of four-dimensional computed tomography in a multicentre trial of stereotactic body radiotherapy of centrally located lung tumours. Phys Imag Radiat Oncol. 2018;8:57-62. doi: 10.1016/j.phro.2018.10.003.
  3. Molitoris JK, Diwanji T, Snider III JW, et al. Optimizing immobilization, margins, and imaging for lung stereotactic body radiation therapy. Transl Lung Cancer Res. 2019;8(1):24-31. doi: 10.21037/tlcr.2018.09.25. PubMed PMID: 30788232. PubMed PMCID: PMC6351403.
  4. Srinivasan K. Mohammadi M. Shepherd J. Applications of linac-mounted kilovoltage Cone-beam Computed Tomography in modern radiation therapy: A review. Pol J Radiol. 2014;79:181-93. doi: 10.12659/PJR.890745. PubMed PMID: 25006356. PubMed PMCID: PMC4085117.
  5. Goyal S. Kataria T. Image guidance in radiation therapy: techniques and applications. Radiol Res Pract. 2014;2014:1-10. doi: 10.1155/2014/705604. PubMed PMID: 25587445. PubMed PMCID: PMC4281403.
  6. Ding GX, Alaei P, Curran B, et al. Image guidance doses delivered during radiotherapy: Quantification, management, and reduction: Report of the AAPM Therapy Physics Committee Task Group 180. Med Phys. 2018;45(5):e84-99. doi: 10.1002/mp.12824. PubMed PMID: 29468678.
  7. Guckenberger M, Meyer J, Wilbert J, et al. Cone-beam CT based image-guidance for extracranial stereotactic radiotherapy of intrapulmonary tumors. Acta Oncol. 2006;45(7):897-906. doi: 10.1080/02841860600904839. PubMed PMID: 16982556.
  8. Brahme A. Dosimetric precision requirements in radiation therapy. Acta Radiol Oncol. 1984;23:379-91. doi: 10.3109/02841868409136037. PubMed PMID: 6095609.
  9. Dutreix A. When and how can we improve precision in radiotherapy? Radiother Oncol. 1984;2:275-92. doi: 10.1016/S0167-8140(84)80070-5.
  10. Wambersie A. What accuracy is required and can be achieved in radiation therapy (review of radiobiological and clinical data). Radiochim Acta. 2001;89:255-64. doi: 10.1524/ract.2001.89.4-5.255.
  11. Herring DF. The degree of precision required in the radiation dose delivered in cancer radiotherapy. Proc. 3rd ICCR, 1970 British institute of radiology special report; Glasgow, Scotland: British Institute of Radiology; 1971. p. 51-8.
  12. Dzierma Y, Mikulla K, Richter P, et al. Imaging dose and secondary cancer risk in image-guided radiotherapy of pediatric patients. Radiat Oncol. 2018;13(1):168. doi: 10.1186/s13014-018-1109-8.
  13. Zhou L, Bai S, Zhang YB, et al. Imaging Dose, Cancer Risk and Cost Analysis in Image-guided Radiotherapy of Cancers. Scientific Reports. 2018;8(1):10076. doi: 10.1038/s41598-018-28431-9.
  14. Dong Wook K, Weon C, Myonggeun Y. Imaging Doses and Secondary Cancer Risk From Kilovoltage Cone-beam CT in Radiation Therapy. Health Physics. 2013;104:499-503. doi: 10.1097/HP.0b013e318285c685. PubMed PMID: 23532078.
  15. Spezi E, Downes P, Jarvis R, et al. Patient-specific three-dimensional concomitant dose from cone beam computed tomography exposure in image-guided radiotherapy. Int J Radiat Oncol Biol Phys. 2012;83(1):419-26. doi: 10.1016/j.ijrobp.2011.06.1972. PubMed PMID: 22027261.
  16. Nakamura M, Ishihara Y, Matsuo Y, et al. Quantification of the kV X-ray imaging dose during real-time tumor tracking and from three- and four-dimensional cone-beam computed tomography in lung cancer patients using a Monte Carlo simulation. J Radiat Res. 2018;59(2):173-81. doi: 10.1093/jrr/rrx098. PubMed PMID: 29385514. PubMed PMCID: PMC5950977.
  17. Yang C, Liu R, Ming X, Liu N, Guan Y, Feng Y. Thoracic Organ Doses and Cancer Risk from Low Pitch Helical 4-Dimensional Computed Tomography Scans. Biomed Res Int. 2018;2018:8927290. doi: 10.1155/2018/8927290. PubMed PMID: 30345309. PubMed PMCID: PMC6174794.
  18. Li R, Han B, Meng B, et al. Clinical implementation of intrafraction cone beam computed tomography imaging during lung tumor stereotactic ablative radiation therapy. Int J Radiat Oncol Biol Phys. 2013;87(5):917-23. doi: 10.1016/j.ijrobp.2013.08.015. PubMed PMID: 24113060. PubMed PMCID: PMC3888501.
  19. Lee C, Kim KP, Bolch WE, Moroz BE, Folio L. NCICT: a computational solution to estimate organ doses for pediatric and adult patients undergoing CT scans. J Radiol Prot. 2015;35:891-909. doi: 10.1088/0952-4746/35/4/891. PubMed PMID: 26609995.
  20. Menzel HG, Clement C, DeLuca P. ICRP Publication 110. Realistic reference phantoms: an ICRP/ICRU joint effort. A report of adult reference computational phantoms. Ann ICRP. 2009;39(2):1-164. doi: 10.1016/j.icrp.2009.09.001. PubMed PMID: 19897132.
  21. Lee C, Lamart S, Moroz BE. Computational lymphatic node models in pediatric and adult hybrid phantoms for radiation dosimetry. Phys Med Biol. 2013;58(5):N59-82. doi: 10.1088/0031-9155/58/5/N59. PubMed PMID: 23391692. PubMed PMCID: PMC3878984.
  22. Tapiovaara M, Lakkisto M and Servomaa A. PCXMC: a PC-based Monte Carlo program for calculating patient doses in medical x-ray examinations. Report STUK-A139; Helsinki, Finland: Finnish Centre for Radiation and Nuclear Safety Authority; 1997.
  23. Ahnesjö A. Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med Phys. 1989;16(4):577-92. doi: 10.1118/1.596360. PubMed PMID: 2770632.
  24. McNutt T. Dose calculations: collapsed cone convolution superposition and delta pixel beam. Pinnacle White Paper No. 4535 983 02474; Netherlands: Philips Medical System; 2002.
  25. Wilke L, Andratschke N, Blanck O, et al. ICRU report 91 on prescribing, recording, and reporting of stereotactic treatments with small photon beams: Statement from the DEGRO/DGMP working group stereotactic radiotherapy and radiosurgery. Strahlenther Onkol. 2019;195(3):193-8. doi: 10.1007/s00066-018-1416-x. PubMed PMID: 30649567.
  26. Ding GX, Munro P. Radiation exposure to patients from image guidance procedures and techniques to reduce the imaging dose. Radiother Oncol. 2013;108:91-98. doi: 10.1016/j.radonc.2013.05.034. PubMed PMID: 23830468.
  27. Stock M, Palm A, Altendorfer A, Steiner E, Georg D. IGRT induced dose burden for a variety of imaging protocols at two different anatomical sites. Radiother Oncol. 2011;102:355-63. doi: 10.1016/j.radonc.2011.10.005. PubMed PMID: 22098793.
  28. Nelson AP, Ding GX. An alternative approach to account for patient organ doses from imaging guidance procedures. Radiother Oncol. 2014;112:112-8. doi: 10.1016/j.radonc.2014.05.019. PubMed PMID: 25023041.
  29. Murphy MJ, Balter J, Balter S, et al. The management of imaging dose during image-guided radiotherapy: report of the AAPM Task Group 75. Med Phys. 2007;34(10):4041-63. doi: 10.1118/1.2775667. PubMed PMID: 17985650.