Document Type: Original Research

Authors

1 MSc, Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran

2 PhD, Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran

3 PhD, Infectious Diseases Research Center, AJA University of Medical Sciences, Tehran, Iran

4 PhD, Department of Genetics and Advanced Technologies, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran

Abstract

Background: Chemotherapy is typically the first-line treatment for the advanced stage of cancers. However, there are shortcomings with respect to conventional chemotherapy that limit therapeutic efficiency, including lack of tumor selectivity, systemic toxicity and drug resistance.
Objective: A multifunctional nanoplatform was build using of hydrogel co-loaded containing cisplatin and Iron oxide–gold core-shell nanoparticles. The Au shell comprises the light response and the iron core can be utilized as a negative contrast agent in nanocomplex.
Material and Methods: In this experimental study, KB cells derived from the epithelial cells located in the nasopharynx were exposed to different levels of concentration of hydrogel co-loaded with cisplatin and Iron oxide–gold core-shell nanoparticles. Afterwards, the cytotoxicity was determined using MTT assay.
Results: The cytotoxicity results showed that this nanoplatforms has potent to create higher cytotoxicity in KB cells than free cisplatin, so that Fe-Au@Alg and Fe-Au@Alg with cisplatin mixed with laser irradiation exhibited a significant reduction in cell viability after 5 min.
Conclusion: Hydrogel co-loaded with cisplatin and Iron oxide–gold core–shell nanoparticles are stable construct to combine chemo-photothermal therapy. Therefore, they can be used as a computed tomography-traceable nanocarrie, enabling us to monitor the delivery of therapeutics.

Keywords