Document Type : Original Research


1 Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran, Iran

2 Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran

3 Department of Energy Engineering, Sharif University of Technology, Tehran, Iran

4 Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran



Background: Electromagnetic induction hyperthermia is a promising method to treat the deep-seated tumors such as brain and prostatic tumors. This technique is performed using the induction of electromagnetic waves in the ferromagnetic cores implanted at the solid tumor.
Objective: This study aims at determining the conditions of the optimal thermal distribution in the different frequencies before performing the in vitro cellular study.
Material and Methods: In this experimental study, the i-Cu alloy (70.4-29.6; wt%) was prepared and characterized and then the parameters, affecting the amount of induction heating in the ferromagnetic core, were investigated. Self-regulating cores in 1, 3, 6, and 9 arrangements in the water phantom with a volume of 2 cm3 were used as a replacement for solid tumor.
Results: Inductively Coupled Plasma (ICP) analysis and Energy Dispersive X-ray Spectroscopy (EDS) show the uniformity of the alloy after 4 times remeling by vacuum arc remelting furnace. The Vibrating Sample Magnetometer (VSM) shows that the Curie temperature (TC) of the ferromagnetic core is less than 50 °C. Temperature profile with a frequency of 100-400 kHz for 30 min, was extracted by infrared imaging camera, indicating the increase temperature in the range of 42 °C to 46 °C. 
Conclusion: The optimum conditions with used hyperthermia system are supplied in the frequency of 100 kHz, 200 kHz and 400 kHz with 6, 3 and 1 seeds, respectively. It is also possible to induce a temperature up to 50 °C by increasing the number of seeds at a constant frequency and power, or by increasing the applied frequency at a constant number of seeds.


Elham Mohagheghpour (Google Scholar)


  1. Chicheł A, Skowronek J, Kubaszewska M, Kanikowski M. Hyperthermia–description of a method and a review of clinical applications. Reports of Practical Oncology & Radiotherapy. 2007;12(5):267-75. doi: 10.1016/S1507-1367(10)60065-X.
  2. Gas P. Essential Facts on the History of Hyperthermia and their Connections with Electromedicine [Internet]. arXiv [Preprint]. 2017 [cited 2017 October 2]. Available from:
  3. Fratila RM, Fuente JM. Introduction to hyperthermia. Elsevier; 2019. doi: 10.1016/B978-0-12-813928-8.09997-X.
  4. Warrell G, Shvydka D, Parsai EI. Use of novel thermobrachytherapy seeds for realistic prostate seed implant treatments. Med Phys. 2016;43(11):6033-48. doi: 10.1118/1.4964457. PubMed PMID: 27806619.
  5. Jordan A, Scholz R, Wust P, Fähling H, Felix R. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. Journal of Magnetism and Magnetic Materials. 1999;201(1-3):413-9. doi: 10.1016/S0304-8853(99)00088-8.
  6. Emami B, Song CW. Physiological mechanisms in hyperthermia: a review. Int J Radiat Oncol Biol Phys. 1984;10(2):289-95. doi: 10.1016/0360-3016(84)90015-4. PubMed PMID: 6368492.
  7. Oei AL, Vriend LE, Crezee J, Franken NA, Krawczyk PM. Effects of hyperthermia on DNA repair pathways: one treatment to inhibit them all. Radiat Oncol. 2015;10(1):1-3. doi: 10.1186/s13014-015-0462-0. PubMed PMID: 26245485. PubMed PMCID: PMC4554295.
  8. Marino C, Cividalli A. Combined radiation and hyperthermia: effects of the number of heat fractions and their interval on normal and tumour tissues. Int J Hyperthermia. 1992;8(6):771-81. doi: 10.3109/02656739209005025. PubMed PMID: 1479203.
  9. Stewart FA, Denekamp J. The therapeutic advantage of combined heat and X rays on a mouse fibrosarcoma. Br J Radiol. 1978;51(604):307-16. doi: 10.1259/0007-1285-51-604-307. PubMed PMID: 647188.
  10. Rasaneh S, Dadras MR. The possibility of using magnetic nanoparticles to increase the therapeutic efficiency of Herceptin antibody. Biomed Tech (Berl). 2015;60(5):485-90. doi: 10.1515/bmt-2014-0192. PubMed PMID: 26146093.
  11. Shvydka D, Gautam B, Parsai E, Feldmeier J. SU-FF-T-39: Investigating Thermal Properties of a Thermobrachytherapy Radioactive Seed for Concurrent Brachytherapy and Hyperthermia Treatments: Design Considerations. Medical Physics. 2009;36(6Part9):2528. doi: 10.1118/1.3181511.
  12. Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics. 2003;36(13):R167.
  13. Kuznetsov AA, Shlyakhtin OA, Brusentsov NA, Kuznetsov OA. “Smart” mediators for self-controlled inductive heating. Eur Cells Mater. 2002;3(2):75-7.
  14. Parsai EI, Gautam B, Shvydka D. Evaluation of a novel thermobrachytherapy seed for concurrent administration of brachytherapy and magnetically mediated hyperthermia in treatment of solid tumors. J Biomed Phys Eng. 2011;1(1):5-16.
  15. Lilly MB, Brezovich IA, Atkinson WJ. Hyperthermia induction with thermally self-regulated ferromagnetic implants. Radiology. 1985;154(1):243-4. doi: 10.1148/radiology.154.1.3964942.
  16. Mieler WF, Jaffe GJ, Steeves RA. Ferromagnetic hyperthermia and iodine 125 brachytherapy in the treatment of choroidal melanoma in a rabbit model. Arch Ophthalmol. 1989;107(10):1524-8. doi: 10.1001/archopht.1989.01070020598048. PubMed PMID: 2803104.
  17. Steeves RA, Murray TG, Moros EG, Boldt HC, Mieler WF, Paliwal BR. Concurrent ferromagnetic hyperthermia and 125I brachytherapy in a rabbit choroidal melanoma model. Int J Hyperthermia. 1992;8(4):443-9. doi: 10.3109/02656739209037982. PubMed PMID: 1402124.
  18. Brezovich IA, Atkinson WJ, Lilly MB. Local hyperthermia with interstitial techniques. Cancer Res. 1984;44(10 Suppl):4752s-6s. PubMed PMID: 6380712.
  19. Chicheł A, Skowronek J, Kanikowski M. Thermal boost combined with interstitial brachytherapy in breast conserving therapy–Assessment of early toxicity. Rep Pract Oncol Radiother. 2011;16(3):87-94. doi:10.1016/j.rpor.2011.02.004. PubMed PMID: 24376963. PubMed PMCID: PMC3863141.
  20. Gautam B, Parsai EI, Shvydka D, Feldmeier J, Subramanian M. Dosimetric and thermal properties of a newly developed thermobrachytherapy seed with ferromagnetic core for treatment of solid tumors. Med Phys. 2012;39(4):1980-90. doi: 10.1118/1.3693048. PubMed PMID: 22482619.
  21. Rabinkin A. Curie temperature of METGLAS magnetic alloys measured by different techniques. IEEE Transactions on Magnetics. 1987;23(6):3874-7. doi: 10.1109/TMAG.1987.1065772.
  22. Robbins CG, Claus H, Beck PA. Transition from Ferromagnetism to Paramagnetism in Ni–Cu Alloys. Journal of Applied Physics. 1969;40(5):2269-73. doi: 10.1063/1.1657970.
  23. Hadimani RL, Melikhov Y, Snyder JE, Jiles DC. Determination of Curie temperature by Arrott plot technique in Gd {sub 5}(Si {sub x} Ge {sub 1-x}){sub 4} for x> 0.575. Journal of Magnetism and Magnetic Materials. 2008;320:e696-8. doi: 10.1016/j.jmmm.2008.04.035.
  24. Bettge M, Chatterjee J, Haik Y. Physically synthesized Ni-Cu nanoparticles for magnetic hyperthermia. Biomagn Res Technol. 2004;2(1):1-6. doi: 10.1186/1477-044X-2-4. PubMed PMID: 15132747. PubMed PMCID: PMC420488.
  25. Ban I, Stergar J, Drofenik M, Ferk G, Makovec D. Synthesis of copper–nickel nanoparticles prepared by mechanical milling for use in magnetic hyperthermia. Journal of Magnetism and Magnetic Materials. 2011;323(17):2254-8. doi: 10.1016/j.jmmm.2011.04.004.
  26. Chen Y, Wang Y, Liu X, Lu M, Cao J, Wang T. LSMO nanoparticles coated by hyaluronic acid for magnetic hyperthermia. Nanoscale Res Lett. 2016;11(1):1-6. doi: 10.1186/s11671-016-1756-3. PubMed PMID: 27914093. PubMed PMCID: PMC5135707.
  27. Gautam BR. Study of dosimetric and thermal properties of a newly developed thermo-brachytherapy seed for treatment of solid tumors [dissertation]. University of Toledo; 2013. Available from:
  28. Chaikin PM, Lubensky TC, Witten TA. Principles of condensed matter physics. Cambridge: Cambridge University Press; 1995.
  29. Ho CY, Ackerman MW, Wu KY, Havill TN, Bogaard RH, Matula RA, Oh SG, James HM. Electrical resistivity of ten selected binary alloy systems. Journal of Physical and Chemical Reference Data. 1983;12(2):183-322. doi: 10.1063/1.555684.
  30. Hatamie S, Parseh B, Ahadian MM, Naghdabadi F, Saber R, Soleimani M. Heat transfer of PEGylated cobalt ferrite nanofluids for magnetic fluid hyperthermia therapy: in vitro cellular study. Journal of Magnetism and Magnetic Materials. 2018;462:185-94. doi :10.1016/j.jmmm.2018.05.020.
  31. Shaterabadi Z, Nabiyouni G, Soleymani M. Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles. Mater Sci Eng C Mater Biol App. 2020;117:111274. doi: 10.1016/j.msec.2020.111274. PubMed PMID: 32919638.