Document Type : Original Research


1 MSc, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2 PhD, Department of Medical Physics, Faculty of Paramedical Sciences, Ilam University of Medical Sciences, Ilam, Iran

3 PhD, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

4 MSc, Vali-e-Asr Radiotherapy and Oncology Center, Qom University of Medical Sciences, Qom, Iran

5 PhD Candidate, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

6 PhD Candidate, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran

7 PhD, Comprehensive Cancer Centres of Nevada, Las Vegas, USA



Background: Gastro-esophageal (GE) junction cancer is the fastest-growing tumor, particularly in the United States (US). 
Objective: This study aimed to compare dosimetric and radiobiological factors among field-in-field (FIF), three-field (3F), and four-field box (4FB) radiotherapy planning techniques for gastro-esophageal junction cancer.
Material and Methods: In this experimental study, thirty patients with GE junction cancer were evaluated, and three planning techniques (field-in-field (FIF), three-field (3F), and four-field box (4FB)) were performed for each patient for a 6-MV photon beam. Dose distribution in the target volume, the monitor units (MUs) required, and the dose delivered to organs at risk (OARs) were compared for these techniques using the paired-sample t-test. 
Results: A significant difference was measured between the FIF and 3F techniques with respect to conformity index (CI), dose homogeneity index (HI), and tumor control probability (TCP) for the target organ, as well as the Dmean for the heart, kidneys, and liver. For the spinal cord, the FIF technique showed a slight reduction in the maximum dose compared to the other two techniques. In addition, the V20 Gy of the lungs and the normal tissue complication probability (NTCP) of all OARs were reduced with FIF method.  
Conclusion: The FIF technique showed better performance for treating patients with gastro-esophageal junction tumors, in terms of dose homogeneity in the target, conformity of the radiation field with the target volume, TCP, less dose to healthy organs, and fewer MU.


  1. Chai J, Jamal MM. Esophageal malignancy: a growing concern. World J Gastroenterol. 2012;18(45):6521-6. doi: 10.3748/wjg.v18.i45.6521. PubMed PMID: 23236223. PubMed PMCID: PMC3516225.
  2. Lerut T, Coosemans W, Decker G, De Leyn P, Nafteux P, Van Raemdonck D. Cancer of the esophagus and gastro-esophageal junction: potentially curative therapies. Surg Oncol. 2001;10(3):113-22. doi: 10.1016/s0960-7404(01)00027-5. PubMed PMID: 11750230.
  3. Buas MF, Vaughan TL. Epidemiology and risk factors for gastroesophageal junction tumors: understanding the rising incidence of this disease. Semin Radiat Oncol. 2013;23(1):3-9. doi: 10.1016/j.semradonc.2012.09.008. PubMed PMID: 23207041. PubMed PMCID: PMC3535292.
  4. Wu A, Ji J. Adenocarcinoma of esophagogastric junction requires a clearer definition. Transl Gastrointest Cancer. 2013;2(1):5-9. doi: 10.3978/j.issn.2224-4778.2013.05.41.
  5. Tu CC, Hsu PK. The frontline of esophageal cancer treatment: questions to be asked and answered. Ann Transl Med. 2018;6(4):83. doi: 10.21037/atm.2017.10.31. PubMed PMID: 29666806. PubMed PMCID: PMC5890033.
  6. Cooper JS, Guo MD, Herskovic A, Macdonald JS, Martenson Jr JA, Al-Sarraf M, et al. Chemoradiotherapy of locally advanced esophageal cancer: long-term follow-up of a prospective randomized trial (RTOG 85-01). JAMA. 1999;281(17):1623-7. doi: 10.1001/jama.281.17.1623. PubMed PMID: 10235156.
  7. Bhide SA, Nutting CM. Recent advances in radiotherapy. BMC Med. 2010;8:25. doi: 10.1186/1741-7015-8-25. PubMed PMID: 20426851. PubMed PMCID: PMC2873246.
  8. Wambersie A, Gahbauer R. Medical applications of electron linear accelerators. CERN; Geneva: CERN Accelerator School; 1996.
  9. Pursamimi M, Ghorbani M, Parwaie W, Shakeri A, Meigooni AS. Evaluation of field-in-field, three-field, and four-field techniques for treatment planning of radiotherapy of pancreatic cancer. J Can Res Ther. 2022;18(1):190-9. doi: 10.4103/jcrt.JCRT_181_20. PubMed PMID: 35381783.
  10. Barnett GC, West CM, Dunning AM, Elliott RM, Coles CE, Pharoah PD, et al. Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat Rev Cancer. 2009;9(2):134-42. doi: 10.1038/nrc2587. PubMed PMID: 19148183. PubMed PMCID: PMC2670578.
  11. Yang GY, McClosky SA, Khushalani NI. Principles of modern radiation techniques for esophageal and gastroesophageal junction cancers. Gastrointest Cancer Res. 2009;3(2 Suppl):S6-10. PubMed PMID: 19461922. PubMed PMCID: PMC2684733.
  12. Gergelis KR, Jethwa KR, Tryggestad EJ, Ashman JB, Haddock MG, Hallemeier CL. Proton beam radiotherapy for esophagus cancer: state of the art. J Thorac Dis. 2020;12(11):7002-10. doi: 10.21037/jtd-2019-cptn-06. PubMed PMID: 33282405. PubMed PMCID: PMC7711403.
  13. Ghadimi B, Jabbari N, Karimkhani L, Mostafanezhad K. Field-in-field technique improves the dosimetric outcome of treatment plans compared with the three-dimensional conformal radiation therapy for esophageal cancer radiotherapy. Int J Hematol Oncol. 2018;28:79-85. doi: 10.4999/uhod.182334.
  14. Allaveisi F, Moghadam AN. Comparison between the four-field box and field-in-field techniques for conformal radiotherapy of the esophagus using dose-volume histograms and normal tissue complication probabilities. Jpn J Radiol. 2017;35(6):327-34. doi: 10.1007/s11604-017-0637-8. PubMed PMID: 28421397.
  15. Chan TY, Tan PW, Tang JI. Intensity-modulated radiation therapy for early-stage breast cancer: is it ready for prime time? Breast Cancer (Dove Med Press). 2017;9:177-83. doi: 10.2147/BCTT.S127583. PubMed PMID: 28360536. PubMed PMCID: PMC5365280.
  16. Ercan T, İğdem Ş, Alço G, Zengin F, Atilla S, Dinçer M, et al. Dosimetric comparison of field in field intensity-modulated radiotherapy technique with conformal radiotherapy techniques in breast cancer. Jpn J Radiol. 2010;28(4):283-9. doi: 10.1007/s11604-010-0423-3. PubMed PMID: 20512546.
  17. Baycan D, Karacetin D, Balkanay AY, Barut Y. Field-in-field IMRT versus 3D-CRT of the breast. Cardiac vessels, ipsilateral lung, and contralateral breast absorbed doses in patients with left-sided lumpectomy: a dosimetric comparison. Jpn J Radiol. 2012;30(10):819-23. doi: 10.1007/s11604-012-0126-z. PubMed PMID: 22986749.
  18. Fuller CD, Nijkamp J, Duppen JC, Rasch CR, Thomas Jr CR, Wang SJ, et al. Prospective randomized double-blind pilot study of site-specific consensus atlas implementation for rectal cancer target volume delineation in the cooperative group setting. Int J Radiat Oncol Biol Phys. 2011;79(2):481-9. doi: 10.1016/j.ijrobp.2009.11.012. PubMed PMID: 20400244. PubMed PMCID: PMC2929319
  19. Gay HA, Niemierko A. A free program for calculating EUD-based NTCP and TCP in external beam radiotherapy. Phys Med. 2007;23(3-4):115-25. doi: 10.1016/j.ejmp.2007.07.001. PubMed PMID: 17825595
  20. Ohtakara K, Hayashi S, Hoshi H. The relation between various conformity indices and the influence of the target coverage difference in prescription isodose surface on these values in intracranial stereotactic radiosurgery. Br J Radiol Suppl. 2012;85(1014):e223-8. doi: 10.1259/bjr/36606138. PubMed PMID: 21937612. PubMed PMCID: PMC3474128.
  21. Chen K, Wei J, Ge C, Xia W, Shi Y, Wang H, et al. Application of auto-planning in radiotherapy for breast cancer after breast-conserving surgery. Sci Rep. 2020;10(1):1-7. doi: 10.1038/s41598-020-68035-w. PubMed PMID: 32616839. PubMed PMCID: PMC7331687.
  22. Wang L, Li C, Meng X, Li C, Sun X, Shang D, et al. Dosimetric and radiobiological comparison of external beam radiotherapy using simultaneous integrated boost technique for esophageal cancer in different location. Front Oncol. 2019;9:674.
  23. Sasaoka M, Futami T. Dosimetric evaluation of whole breast radiotherapy using field-in-field technique in early-stage breast cancer. Int J Clin Oncol. 2011;16(3):250-6. doi: 10.3389/fonc.2019.00674. PubMed PMID: 31404144. PubMed PMCID: PMC6669560.
  24. Niemierko A. A generalized concept of equivalent uniform dose (EUD). Med Phys. 1999;26(6):1100.
  25. Henríquez FC, Castrillón SV. A quality index for equivalent uniform dose. J Med Phys. 2011;36(3):126-32. doi: 10.4103/0971-6203.83466. PubMed PMID: 21897557. PubMed PMCID: PMC3159218.
  26. Rana S, Cheng C, Zheng Y, Hsi W, Zeidan O, Schreuder N, et al. Dosimetric study of uniform scanning proton therapy planning for prostate cancer patients with a metal hip prosthesis, and comparison with volumetric-modulated arc therapy. J Appl Clin Med Phys. 2014;15(3):335-48. doi: 10.1120/jacmp.v15i3.4611. PubMed PMID: 24892333. PubMed PMCID: PMC5711041.
  27. Shanei A, Amouheidari A, Abedi I, Kazemzadeh A, Jaafari A. Radiobiological comparison of 3D conformal and intensity modulated radiation therapy in the treatment of left-sided breast cancer. Int J Radiat Res. 2020;18(2):315-22. doi: 10.18869/acadpub.ijrr.18.2.315.
  28. Mesbahi A, Rasouli N, Mohammadzadeh M, Nasiri Motlagh B, Ozan Tekin H. Comparison of radiobiological models for radiation therapy plans of prostate cancer: three-dimensional conformal versus intensity modulated radiation therapy. J Biomed Phys Eng. 2019;9(3):267-78. doi: 10.31661/jbpe.v9i3Jun.655. PubMed PMID: 31341872. PubMed PMCID: PMC6613163.
  29. Yavas G, Yavas C, Acar H. Dosimetric comparison of whole breast radiotherapy using field in field and conformal radiotherapy techniques in early stage breast cancer. Int J Radiat Res. 2012;10(3/4):131-8.
  30. Waheed A, Butt S, Ishtiaq A, Mansha MA, Mehreen S, Raza M, et al. Dosimetric comparison of whole breast radiotherapy using field-in-field and volumetric modulated arc therapy techniques in left-sided breast cancer patients. 2021;13(6):e15732. doi: 10.7759/cureus.15732. PubMed PMID: 34285843. PubMed PMCID: PMC8286429.
  31. Prabhakar R, Julka P, Rath G. Can field-in-field technique replace wedge filter in radiotherapy treatment planning: a comparative analysis in various treatment sites. Australas Phys Eng Sci Med. 2008;31(4):317-24. doi: 10.1007/BF03178601. PubMed PMID: 19239058.
  32. Onal C, Sonmez A, Arslan G, Oymak E, Kotek A, Efe E, et al. Dosimetric comparison of the field-in-field technique and tangential wedged beams for breast irradiation. Jpn J Radiol. 2012;30(3):218-26. doi: 10.1007/s11604-011-0034-7. PubMed PMID: 22183829.
  33. Nokhasteh S, Nazemi H, Hejazi P, Dayyani M. Comparison of dosimetric parameters between field in field and conformal radiation therapy techniques in early stage of left breast cancer patients. Int J Cancer Manag. 2019;12(2):1-3. doi: 10.5812/ijcm.84123.
  34. Prabhakar R, Haresh K, Kumar M, Sharma D, Julka P, Rath G. Field-in-field technique for upper abdominal malignancies in clinical radiotherapy. J Cancer Res Ther. 2009;5(1):20-3. doi: 10.4103/0973-1482.48765. PubMed PMID: 19293484.
  35. Altinok P, Tekçe E, Karaköse F, Berk K, Kalafat Ü, Kiziltan HS, et al. Dosimetric comparison of modern radiotherapy techniques for gastric cancer after total gastrectomy. J Cancer Res Ther. 2020;16(Supplement):S133-7. doi: 10.4103/jcrt.JCRT_548_18. PubMed PMID: 33380667.
  36. Yavas G, Yavas C, Acar H, Buyukyoruk A, Cobanoglu G, Kerimoglu OS, et al. Dosimetric comparison of 3-dimensional conformal and field-in-field radiotherapy techniques for the adjuvant treatment of early stage endometrial cancer. Phys Med. 2013;29(6):577-82. doi: 10.1016/j.ejmp.2012.11.002. PubMed PMID: 23219336.
  37. Lee S, Kim M, Park S, Lee M, Suh T. Radiobiological and physical effects of patient setup errors during whole breast irradiation. Int J Radiat Res. 2017;15(4):343-52. doi: 10.18869/acadpub.ijrr.15.4.343.
  38. 38-Xu H, Hatcher G. Treatment planning study of volumetric modulated arc therapy and three dimensional field-in-field techniques for left chest-wall cancers with regional lymph nodes. Rep Pract Oncol Radiother. 2016;21(6):517-24. doi: 10.1016/j.rpor.2016.07.005. PubMed PMID: 27698592. PubMed PMCID: PMC5036511.
  39. Joseph K, Vos LJ, Gabos Z, Pervez N, Chafe S, Tankel K, et al. Skin toxicity in early breast cancer patients treated with field-in-field breast intensity-modulated radiotherapy versus helical inverse breast intensity-modulated radiotherapy: results of a phase III randomised controlled trial. Clin Oncol (R Coll Radiol). 2021;33(1):30-9. doi: 10.1016/j.clon.2020.07.005. PubMed PMID: 32711920.
  40. Haciislamoglu E, Cinar Y, Gurcan F, Canyilmaz E, Gungor G, Yoney A. Secondary cancer risk after whole-breast radiation therapy: field-in-field versus intensity modulated radiation therapy versus volumetric modulated arc therapy. Br J Radiol. 2019;92(1102):20190317. doi: 10.1259/bjr.20190317. PubMed PMID: 31295011. PubMed PMCID: PMC6774602.
  41. Serarslan A, Ozbek Okumus N, Gursel B, Meydan D, Dastan Y, Aksu T. Dosimetric comparison of three different radiotherapy techniques in antrum-located stomach cancer. Asian Pac J Cancer Prev. 2017;18(3):741-6. doi: 10.22034/APJCP.2017.18.3.741. PubMed PMID: 28441708. PubMed PMCID: PMC5464493.
  42. Gustafson NR, Burrier T, Butler B, Hunzeker A, Lenards N, Culp L. Correlation of hot spot to breast separation in patients treated with postlumpectomy tangent 3D-CRT using field-in-field technique and mixed photon energies. Med Dosim. 2020;45(2):134-9. doi: 10.1016/j.meddos.2019.08.004. PubMed PMID: 31521451.