Document Type : Original Research
Authors
1 Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
2 Department of Neurosurgery, Hazrat Rasool Hospital, Iran University of Medical Sciences, Tehran, Iran
3 Department of Physical Medicine and Rehabilitation, Northwestern University, USA
Abstract
Background: T1 thermometry is considered a straight method for the safety monitoring of patients with deep brain stimulation (DBS) electrodes against radiofrequency-induced heating during Magnetic Resonance Imaging (MRI), requiring different sequences and methods.
Objective: This study aimed to compare two T1 thermometry methods and two low specific absorption rate (SAR) imaging sequences in terms of the output image quality.
Material and Methods: In this experimental study, a gel phantom was prepared, resembling the brain tissue properties with a copper wire inside. Two types of rapid gradient echo sequences, namely radiofrequency-spoiled and balanced steady-state free precession (bSSFP) sequences, were used. T1 thermometry was performed by either T1-weighted images with a high SAR sequence to increase heating around the wire or T1 mapping methods.
Results: The balanced steady-state free precession (bSSFP) sequence provided higher image quality in terms of spatial resolution (1×1×1.5 mm3 compared with 1×1×3 mm3) at a shorter acquisition time. The susceptibility artifact was also less pronounced for the bSSFP sequence compared with the radiofrequency-spoiled sequence. A temperature increase, of up to 8 ℃, was estimated using a high SAR sequence. The estimated change in temperature was reduced when using the T1 mapping method.
Conclusion: Heating induced during MRI of implanted electrodes could be estimated using high-resolution T1 maps obtained from inversion recovery bSSFP sequence. Such a method gives a direct estimation of heating during the imaging sequence, which is highly desirable for safe MRI of DBS patients.
Highlights
Mehdi Mohammad Mirbagheri (Google Scholar)
Keywords
- Middlebrooks EH, Domingo RA, Vivas-Buitrago T, Okromelidze L, Tsuboi T, Wong JK, et al. Neuroimaging Advances in Deep Brain Stimulation: Review of Indications, Anatomy, and Brain Connectomics. AJNR Am J Neuroradiol. 2020;41(9):1558-68. doi: 10.3174/ajnr.A6693. PubMed PMID: 32816768. PubMed PMCID: PMC7583111.
- Xiao Y, Lau JC, Hemachandra D, Gilmore G, Khan AR, Peters TM. Image Guidance in Deep Brain Stimulation Surgery to Treat Parkinson’s Disease: A Comprehensive Review. IEEE Trans Biomed Eng. 2021;68(3):1024-33. doi: 10.1109/TBME.2020.3006765. PubMed PMID: 32746050.
- Rezai AR, Phillips M, Baker KB, Sharan AD, Nyenhuis J, Tkach J, et al. Neurostimulation system used for deep brain stimulation (DBS): MR safety issues and implications of failing to follow safety recommendations. Invest Radiol. 2004;39(5):300-3. doi: 10.1097/01.rli.0000124940.02340.ab. PubMed PMID: 15087724.
- Medtronics I. MRI guidelines for medtronic deep brain stimulation systems. 2015. Available from: https://mriquestions.com/uploads/3/4/5/7/34572113/dbs_medtronics_contrib_228155.pdf.
- Larson PS, Richardson RM, Starr PA, Martin AJ. Magnetic resonance imaging of implanted deep brain stimulators: experience in a large series. Stereotact Funct Neurosurg. 2008;86(2):92-100. doi: 10.1159/000112430. PubMed PMID: 18073522.
- Zrinzo L, Yoshida F, Hariz MI, Thornton J, Foltynie T, Yousry TA, Limousin P. Clinical safety of brain magnetic resonance imaging with implanted deep brain stimulation hardware: large case series and review of the literature. World Neurosurg. 2011;76(1-2):164-72. doi: 10.1016/j.wneu.2011.02.029. PubMed PMID: 21839969.
- Baker KB, Tkach JA, Nyenhuis JA, Phillips M, Shellock FG, Gonzalez-Martinez J, Rezai AR. Evaluation of specific absorption rate as a dosimeter of MRI-related implant heating. J Magn Reson Imaging. 2004;20(2):315-20. doi: 10.1002/jmri.20103. PubMed PMID: 15269959.
- Nitz WR, Brinker G, Diehl D, Frese G. Specific absorption rate as a poor indicator of magnetic resonance-related implant heating. Invest Radiol. 2005;40(12):773-6. doi: 10.1097/01.rli.0000185898.59140.91. PubMed PMID: 16304480.
- Mattei E, Triventi M, Calcagnini G, Censi F, Kainz W, Mendoza G, Bassen HI, Bartolini P. Complexity of MRI induced heating on metallic leads: experimental measurements of 374 configurations. Biomed Eng Online. 2008;7:11. doi: 10.1186/1475-925X-7-11. PubMed PMID: 18315869. PubMed PMCID: PMC2292730.
- Rieke V, Butts Pauly K. MR thermometry. J Magn Reson Imaging. 2008;27(2):376-90. doi: 10.1002/jmri.21265. PubMed PMID: 18219673. PubMed PMCID: PMC2780364.
- Winter L, Oberacker E, Paul K, Ji Y, Oezerdem C, Ghadjar P, et al. Magnetic resonance thermometry: Methodology, pitfalls and practical solutions. Int J Hyperthermia. 2016;32(1):63-75. doi: 10.3109/02656736.2015.1108462. PubMed PMID: 26708630.
- Saleh C, Dooms G, Berthold C, Hertel F. Post-operative imaging in deep brain stimulation: A controversial issue. Neuroradiol J. 2016;29(4):244-9. doi: 10.1177/1971400916639960. PubMed PMID: 27029393. PubMed PMCID: PMC4978322.
- Detti V, Grenier D, Perrin E, Beuf O. Assessment of radiofrequency self-heating around a metallic wire with MR T1-based thermometry. Magn Reson Med. 2011;66(2):448-55. doi: 10.1002/mrm.22834. PubMed PMID: 21360744.
- Allison J, Yanasak N. What MRI Sequences Produce the Highest Specific Absorption Rate (SAR), and Is There Something We Should Be Doing to Reduce the SAR During Standard Examinations? AJR Am J Roentgenol. 2015;205(2):W140. doi: 10.2214/AJR.14.14173. PubMed PMID: 26204302.
- Hargreaves BA. Rapid gradient-echo imaging. J Magn Reson Imaging. 2012;36(6):1300-13. doi: 10.1002/jmri.23742. PubMed PMID: 23097185. PubMed PMCID: PMC3502662.
- Scheffler K, Hennig J. Is TrueFISP a gradient-echo or a spin-echo sequence? Magn Reson Med. 2003;49(2):395-7. doi: 10.1002/mrm.10351. PubMed PMID: 12541263.
- Ehses P, Fidler F, Nordbeck P, Pracht ED, Warmuth M, Jakob PM, Bauer WR. MRI thermometry: Fast mapping of RF-induced heating along conductive wires. Magn Reson Med. 2008;60(2):457-61. doi: 10.1002/mrm.21417. PubMed PMID: 18570323.
- Shrivastava D, Abosch A, Hughes J, Goerke U, DelaBarre L, Visaria R, et al. Heating induced near deep brain stimulation lead electrodes during magnetic resonance imaging with a 3 T transceive volume head coil. Phys Med Biol. 2012;57(17):5651-65. doi: 10.1088/0031-9155/57/17/5651. PubMed PMID: 22892760. PubMed PMCID: PMC3469254.
- Wansapura JP, Holland SK, Dunn RS, Ball WS Jr. NMR relaxation times in the human brain at 3.0 tesla. J Magn Reson Imaging. 1999;9(4):531-8. doi: 10.1002/(sici)1522-2586(199904)9:4<531::aid-jmri4>3.0.co;2-l. PubMed PMID: 10232510.
- Scheffler K, Hennig J. T(1) quantification with inversion recovery TrueFISP. Magn Reson Med. 2001;45(4):720-3. doi: 10.1002/mrm.1097. PubMed PMID: 11284003.
- Shellock FG. Patient monitoring in the magnetic resonance environment. In: Magnetic resonance procedures: health effects and safety. Boca Raton: CRC Press, 2001. p. 217-40.
- Kato H, Kuroda M, Yoshimura K, Yoshida A, Hanamoto K, Kawasaki S, et al. Composition of MRI phantom equivalent to human tissues. Med Phys. 2005;32(10):3199-208. doi: 10.1118/1.2047807. PubMed PMID: 16279073.
- Armenean C, Perrin E, Armenean M, Beuf O, Pilleul F, Saint-Jalmes H. RF-induced temperature elevation along metallic wires in clinical magnetic resonance imaging: influence of diameter and length. Magn Reson Med. 2004;52(5):1200-6. doi: 10.1002/mrm.20246. PubMed PMID: 15508156.
- Bhusal B, Nguyen BT, Vu J, Elahi B, Rosenow J, Nolt MJ, et al. Device Configuration and Patient’s Body Composition Significantly Affect RF Heating of Deep Brain Stimulation Implants During MRI: An Experimental Study at 1.5T and 3T. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:5192-7. doi: 10.1109/EMBC44109.2020.9175833. PubMed PMID: 33019155.
- Golestanirad L, Angelone LM, Iacono MI, Katnani H, Wald LL, Bonmassar G. Local SAR near deep brain stimulation (DBS) electrodes at 64 and 127 MHz: A simulation study of the effect of extracranial loops. Magn Reson Med. 2017;78(4):1558-65. doi: 10.1002/mrm.26535. PubMed PMID: 27797157. PubMed PMCID: PMC5411348.
- Cabot E, Lloyd T, Christ A, Kainz W, Douglas M, Stenzel G, et al. Evaluation of the RF heating of a generic deep brain stimulator exposed in 1.5 T magnetic resonance scanners. 2013;34(2):104-13. doi: 10.1002/bem.21745. PubMed PMID: 23060256.
- Deoni SC. High-resolution T1 mapping of the brain at 3T with driven equilibrium single pulse observation of T1 with high-speed incorporation of RF field inhomogeneities (DESPOT1-HIFI). J Magn Reson Imaging. 2007;26(4):1106-11. doi: 10.1002/jmri.21130. PubMed PMID: 17896356.
- Liang Z-P, Lauterbur PC. Principles of magnetic resonance imaging: a signal processing perspective. New York, NY: IEEE Press; 2000.
- Barral JK, Gudmundson E, Stikov N, Etezadi-Amoli M, Stoica P, Nishimura DG. A robust methodology for in vivo T1 mapping. Magn Reson Med. 2010;64(4):1057-67. doi: 10.1002/mrm.22497. PubMed PMID: 20564597. PubMed PMCID: PMC2962940.
- Ogg RJ, Kingsley PB. Optimized precision of inversion-recovery T1 measurements for constrained scan time. Magn Reson Med. 2004;51(3):625-30. doi: 10.1002/mrm.10734. PubMed PMID: 15004808.
- Deichmann R. Fast high-resolution T1 mapping of the human brain. Magn Reson Med. 2005;54(1):20-7. doi: 10.1002/mrm.20552. PubMed PMID: 15968665.
- Gensler D, Fidler F, Ehses P, Warmuth M, Reiter T, Düring M, et al. MR safety: fast T1 thermometry of the RF-induced heating of medical devices. Magn Reson Med. 2012;68(5):1593-9. doi: 10.1002/mrm.24171. PubMed PMID: 22287286.