Document Type : Original Research
Authors
- Marziyeh Mirzaeiyan 1
- Ali Akhavan 2
- Alireza Amouheidari 3
- Atoosa Adibi 4
- Simin Hemati 2
- Mahnaz Etehadtavakol 1
- Hossein Khanahmad 5
- Parvaneh Shokrani 1
1 Department of Medical Physics, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
2 Department of Radiotherapy Oncology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
3 Department of Radiation Oncology, Isfahan Milad Hospital, Isfahan, Iran
4 Department of Radiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
5 Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
Abstract
Background: Modern radiotherapy techniques can destroy tumors with less harm to surrounding normal tissues. Normal Tissue Complication Probability (NTCP) models are useful to evaluate treatment plans.
Objective: This study aimed to use the Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) program to evaluate dose-volume indicators and radiobiological parameters for complications of the rectum and bladder in prostate cancer patients undergoing pelvic radiotherapy.
Material and Methods: In this retrospective cross-sectional study, treatment planning information was gathered from 35 patients with pelvic lymph node involvement. Of these, 17 and 18 were treated using the three-dimensional Conformal Radiotherapy Technique (3D-CRT) and the Helical Tomotherapy (HT) technique, respectively. The Lyman-Kutcher-Burman and Relative Seriality models were used in conjunction with dose-volume histograms to calculate the NTCP values for the rectum and bladder.
Results: In the HT group compared to the 3D-CRT group, the values of D-Mean, V-40, V-50, V-60, and V-65 were lower for both the rectum and bladder. The NTCP values for grade 2 rectal bleeding, proctitis, and bladder toxicity were lower in the HT group. The dose-volume data of 67% of the HT patients satisfied all QUANTEC criteria, while only 30% of the 3D-CRT those met criteria.
Conclusion: The QUANTEC criteria were satisfied for the rectum and bladder in the HT and 3D-CRT groups, except for V-50, V-60, and V-65 of the rectum in 3D-CRT patients. The NTCP values for both organs were lower in the HT group than in the 3D-CRT group.
Highlights
Marziyeh Mirzaeiyan (Google Scholar)
Parvaneh Shokrani (Google Scholar)
Keywords
- Rana S, Cheng C. Radiobiological impact of planning techniques for prostate cancer in terms of tumor control probability and normal tissue complication probability. Ann Med Health Sci Res. 2014;4(2):167-72. doi: 10.4103/2141-9248.129023. PubMed PMID: 24761232. PubMed PMCID: PMC3991934.
- Viani G, Hamamura AC, Faustino AC. Intensity modulated radiotherapy (IMRT) or conformational radiotherapy (3D-CRT) with conventional fractionation for prostate cancer: Is there any clinical difference? Int Braz J Urol. 2019;45(6):1105-12. doi: 10.1590/s1677-5538.Ibju.2018.0842. PubMed PMID: 31808397. PubMed PMCID: PMC6909869.
- Yu T, Zhang Q, Zheng T, Shi H, Liu Y, Feng S, et al. The Effectiveness of Intensity Modulated Radiation Therapy versus Three-Dimensional Radiation Therapy in Prostate Cancer: A Meta-Analysis of the Literatures. PLoS One. 2016;11(5):e0154499. doi: 10.1371/journal.pone.0154499. PubMed PMID: 27171271. PubMed PMCID: PMC4865138.
- Poncyljusz M, Kukołowicz P, Chorąży J, Czyżew B, Jankowska AM, Paciorkiewicz A, et al. Comparison of 3D-CRT and IMRT techniques in radiotherapy for post-prostatectomy patients with a higher risk of nodal involvement. 2017;66:440-4.
- Fischer-Valuck BW, Rao YJ, Michalski JM. Intensity-modulated radiotherapy for prostate cancer. Transl Androl Urol. 2018;7(3):297-307. doi: 10.21037/tau.2017.12.16. PubMed PMID: 30050791. PubMed PMCID: PMC6043750.
- Jensen I, Carl J, Lund B, Larsen EH, Nielsen J. Radiobiological impact of reduced margins and treatment technique for prostate cancer in terms of tumor control probability (TCP) and normal tissue complication probability (NTCP). Med Dosim. 2011;36(2):130-7. doi: 10.1016/j.meddos.2010.02.004. PubMed PMID: 20488692.
- Tsai CL, Wu JK, Chao HL, Tsai YC, Cheng JC. Treatment and dosimetric advantages between VMAT, IMRT, and helical tomotherapy in prostate cancer. Med Dosim. 2011;36(3):264-71. doi: 10.1016/j.meddos.2010.05.001. PubMed PMID: 20634054.
- Cozzarini C, Fiorino C, Di Muzio N, Alongi F, Broggi S, Cattaneo M, et al. Significant reduction of acute toxicity following pelvic irradiation with helical tomotherapy in patients with localized prostate cancer. Radiother Oncol. 2007;84(2):164-70. doi: 10.1016/j.radonc.2007.07.013. PubMed PMID: 17706308.
- Rodrigues G, Yartsev S, Chen J, Wong E, D’Souza D, Lock M, et al. A comparison of prostate IMRT and helical tomotherapy class solutions. Radiother Oncol. 2006;80(3):374-7. doi: 10.1016/j.radonc.2006.07.005. PubMed PMID: 16884799.
- Shawata AS, Akl MF, Elshahat KM, Baker NA, Ahmed MT. Evaluation of different planning methods of 3DCRT, IMRT, and RapidArc for localized prostate cancer patients: planning and dosimetric study. Egyptian Journal of Radiology and Nuclear Medicine. 2019;50(1):23. doi: 10.1186/s43055-019-0021-z.
- Malone S, Croke J, Roustan-Delatour N, Belanger E, Avruch L, Malone C, et al. Postoperative radiotherapy for prostate cancer: a comparison of four consensus guidelines and dosimetric evaluation of 3D-CRT versus tomotherapy IMRT. Int J Radiat Oncol Biol Phys. 2012;84(3):725-32. doi: 10.1016/j.ijrobp.2011.12.081. PubMed PMID: 22444999.
- Viani GA, Stefano EJ, Afonso SL. Higher-than-conventional radiation doses in localized prostate cancer treatment: a meta-analysis of randomized, controlled trials. Int J Radiat Oncol Biol Phys. 2009;74(5):1405-18. doi: 10.1016/j.ijrobp.2008.10.091. PubMed PMID: 19616743.
- Murakami Y, Soyano T, Kozuka T, Ushijima M, Koizumi Y, Miyauchi H, et al. Dose-Based Radiomic Analysis (Dosiomics) for Intensity Modulated Radiation Therapy in Patients With Prostate Cancer: Correlation Between Planned Dose Distribution and Biochemical Failure. Int J Radiat Oncol Biol Phys. 2022;112(1):247-59. doi: 10.1016/j.ijrobp.2021.07.1714. PubMed PMID: 34706278.
- Carillo V, Cozzarini C, Rancati T, Avuzzi B, Botti A, Borca VC, et al. Relationships between bladder dose-volume/surface histograms and acute urinary toxicity after radiotherapy for prostate cancer. Radiother Oncol. 2014;111(1):100-5. doi: 10.1016/j.radonc.2014.02.006. PubMed PMID: 24631144.
- Fiorino C, Fellin G, Rancati T, Vavassori V, Bianchi C, Borca VC, et al. Clinical and dosimetric predictors of late rectal syndrome after 3D-CRT for localized prostate cancer: preliminary results of a multicenter prospective study. Int J Radiat Oncol Biol Phys. 2008;70(4):1130-7. doi: 10.1016/j.ijrobp.2007.07.2354. PubMed PMID: 17881142.
- Choe KS, Jani AB, Liauw SL. External beam radiotherapy for prostate cancer patients on anticoagulation therapy: how significant is the bleeding toxicity? Int J Radiat Oncol Biol Phys. 2010;76(3):755-60. doi: 10.1016/j.ijrobp.2009.02.026. PubMed PMID: 19464123.
- Vavassori V, Fiorino C, Rancati T, Magli A, Fellin G, Baccolini M, et al. Predictors for rectal and intestinal acute toxicities during prostate cancer high-dose 3D-CRT: results of a prospective multicenter study. Int J Radiat Oncol Biol Phys. 2007;67(5):1401-10. doi: 10.1016/j.ijrobp.2006.10.040. PubMed PMID: 17241754.
- Storey MR, Pollack A, Zagars G, Smith L, Antolak J, Rosen I. Complications from radiotherapy dose escalation in prostate cancer: preliminary results of a randomized trial. Int J Radiat Oncol Biol Phys. 2000;48(3):635-42. doi: 10.1016/s0360-3016(00)00700-8. PubMed PMID: 11020558.
- Boersma LJ, Van Den Brink M, Bruce AM, Shouman T, Gras L, Te Velde A, et al. Estimation of the incidence of late bladder and rectum complications after high-dose (70-78 GY) conformal radiotherapy for prostate cancer, using dose-volume histograms. Int J Radiat Oncol Biol Phys. 1998;41(1):83-92. doi: 10.1016/s0360-3016(98)00037-6. PubMed PMID: 9588921.
- Liang B, Yan H, Tian Y, Chen X, Yan L, Zhang T, et al. Dosiomics: Extracting 3D Spatial Features From Dose Distribution to Predict Incidence of Radiation Pneumonitis. Front Oncol. 2019;9:269. doi: 10.3389/fonc.2019.00269. PubMed PMID: 31032229. PubMed PMCID: PMC6473398.
- Defraene G, Van den Bergh L, Al-Mamgani A, Haustermans K, Heemsbergen W, Van Den Heuvel F, et al. The benefits of including clinical factors in rectal normal tissue complication probability modeling after radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2012;82(3):1233-42. doi: 10.1016/j.ijrobp.2011.03.056. PubMed PMID: 21664059.
- Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S10-9. doi: 10.1016/j.ijrobp.2009.07.1754. PubMed PMID: 20171502. PubMed PMCID: PMC4041542.
- Viswanathan AN, Yorke ED, Marks LB, Eifel PJ, Shipley WU. Radiation dose-volume effects of the urinary bladder. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S116-22. doi: 10.1016/j.ijrobp.2009.02.090. PubMed PMID: 20171505. PubMed PMCID: PMC3587780.
- Michalski JM, Gay H, Jackson A, Tucker SL, Deasy JO. Radiation dose-volume effects in radiation-induced rectal injury. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S123-9. doi: 10.1016/j.ijrobp.2009.03.078. PubMed PMID: 20171506. PubMed PMCID: PMC3319467.
- Uzan J, Nahum AE. Radiobiologically guided optimisation of the prescription dose and fractionation scheme in radiotherapy using BioSuite. Br J Radiol. 2012;85(1017):1279-86. doi: 10.1259/bjr/20476567. PubMed PMID: 22457318. PubMed PMCID: PMC3487060.
- Kutcher GJ, Burman C, Brewster L, Goitein M, Mohan R. Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations. Int J Radiat Oncol Biol Phys. 1991;21(1):137-46. doi: 10.1016/0360-3016(91)90173-2. PubMed PMID: 2032884.
- Källman P, Agren A, Brahme A. Tumour and normal tissue responses to fractionated non-uniform dose delivery. Int J Radiat Biol. 1992;62(2):249-62. doi: 10.1080/09553009214552071. PubMed PMID: 1355519.
- Gulliford SL, Partridge M, Sydes MR, Webb S, Evans PM, Dearnaley DP. Parameters for the Lyman Kutcher Burman (LKB) model of Normal Tissue Complication Probability (NTCP) for specific rectal complications observed in clinical practise. Radiother Oncol. 2012;102(3):347-51. doi: 10.1016/j.radonc.2011.10.022. PubMed PMID: 22119373.
- Troeller A, Yan D, Marina O, Schulze D, Alber M, Parodi K, et al. Comparison and limitations of DVH-based NTCP models derived from 3D-CRT and IMRT data for prediction of gastrointestinal toxicities in prostate cancer patients by using propensity score matched pair analysis. Int J Radiat Oncol Biol Phys. 2015;91(2):435-43. doi: 10.1016/j.ijrobp.2014.09.046. PubMed PMID: 25636766.
- Zhu J, Simon A, Haigron P, Lafond C, Acosta O, Shu H, et al. The benefit of using bladder sub-volume equivalent uniform dose constraints in prostate intensity-modulated radiotherapy planning. Onco Targets Ther. 2016;9:7537-44. doi: 10.2147/ott.S116508. PubMed PMID: 28003767. PubMed PMCID: PMC5161391.
- Rancati T, Fiorino C, Gagliardi G, Cattaneo GM, Sanguineti G, Borca VC, et al. Fitting late rectal bleeding data using different NTCP models: results from an Italian multi-centric study (AIROPROS0101). Radiother Oncol. 2004;73(1):21-32. doi: 10.1016/j.radonc.2004.08.013. PubMed PMID: 15465142.
- Mavroidis P, Pearlstein KA, Dooley J, Sun J, Saripalli S, Das SK, et al. Fitting NTCP models to bladder doses and acute urinary symptoms during post-prostatectomy radiotherapy. Radiat Oncol. 2018;13(1):17. doi: 10.1186/s13014-018-0961-x. PubMed PMID: 29394931. PubMed PMCID: PMC5797360.
- Di Muzio N, Fiorino C, Cozzarini C, Alongi F, Broggi S, Mangili P, et al. Phase I-II study of hypofractionated simultaneous integrated boost with tomotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2009;74(2):392-8. doi: 10.1016/j.ijrobp.2008.08.038. PubMed PMID: 19056184.
- Kita N, Shibamoto Y, Takemoto S, Manabe Y, Yanagi T, Sugie C, et al. Comparison of intensity-modulated radiotherapy with the 5-field technique, helical tomotherapy and volumetric modulated arc therapy for localized prostate cancer. J Radiat Res. 2022;63(4):666-74. doi: 10.1093/jrr/rrac027. PubMed PMID: 35726342. PubMed PMCID: PMC9303627.
- Cuccia F, Mortellaro G, Serretta V, Valenti V, Tripoli A, Gueci M, et al. Hypofractionated postoperative helical tomotherapy in prostate cancer: a mono-institutional report of toxicity and clinical outcomes. Cancer Manag Res. 2018;10:5053-60. doi: 10.2147/cmar.S182016. PubMed PMID: 30464605. PubMed PMCID: PMC6214338.
- Nitsche M, Brannath W, Brückner M, Wagner D, Kaltenborn A, Temme N, et al. Comparison of different contouring definitions of the rectum as organ at risk (OAR) and dose-volume parameters predicting rectal inflammation in radiotherapy of prostate cancer: which definition to use? Br J Radiol. 2017;90(1070):20160370. doi: 10.1259/bjr.20160370. PubMed PMID: 27936891. PubMed PMCID: PMC5685105.
- Ren W, Liang B, Sun C, Wu R, Men K, Xu Y, et al. Dosiomics-based prediction of radiation-induced hypothyroidism in nasopharyngeal carcinoma patients. Phys Med. 2021;89:219-25. doi: 10.1016/j.ejmp.2021.08.009. PubMed PMID: 34425512.