Document Type : Original Research

Authors

1 Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

2 Department of Radiation Oncology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

10.31661/jbpe.v0i0.2301-1580

Abstract

Background: Magnetic Resonance Imaging (MRI) has become a complementary imaging method for the treatment planning process due to the limitations of Computed Tomography (CT) imaging.
Objective: This study aimed to assess the effect of co-registered MRI and CT (MRI/CT)-based target delineation on the dose to the target, small bowel, bladder, and femoral heads during Helical Tomotherapy (HT).
Material and Methods: In this cross-sectional prospective study, MRI in a prone position were obtained for 12 patients with rectal cancer at one-day intervals with simulation CT. Following the co-registration process with the deformable algorithm, target volumes are defined. Gross Tumor Volume (GTV), Clinical Target Volume (CTV), and Planning Target Volume (PTV) were delineated for each CT and MRI/CT.
Results: GTV, CTV, and PTV mean values were significantly higher in the CT-based target delineation method than those in the MRI/CT-based method. In MRI/CT-based plans, the mean HI value was significantly lower, and the mean Conformity Index (CI) value was significantly higher than that in CT-based plans. In a small bowl, the most of dosimetric parameters (Dmax, Dmean, D50%, D50%, V40%, and V45%) were significantly higher for the CT-based plans. In the bladder, all dosimetric parameters, except V30%, were statistically higher in CT-based plans.  
Conclusion: Co-registered MRI/CT-based treatment planning can produce better dose coverage for the target and reduce the delivered dose to the Organs at Risk (OARs) when compared to CT-based planning.

Highlights

Baranoosh Rahmani (Google Scholar)

Daryoush Shahbazi-Gahrouei (Google Scholar)

Keywords

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-49. doi: 10.3322/caac.21660. PubMed PMID: 33538338.
  2. Wo JY, Anker CJ, Ashman JB, Bhadkamkar NA, Bradfield L, Chang DT, et al. Radiation Therapy for Rectal Cancer: Executive Summary of an ASTRO Clinical Practice Guideline. Pract Radiat Oncol. 2021;11(1):13-25. doi: 10.1016/j.prro.2020.08.004. PubMed PMID: 33097436.
  3. Youssef FF, Parikh PJ, DeWees TA, Mutch MG, Tan BR Jr, Grigsby PW, et al. Efficacy and toxicity of rectal cancer reirradiation using IMRT for patients who have received prior pelvic radiation therapy. Adv Radiat Oncol. 2016;1(2):94-100. doi: 10.1016/j.adro.2016.02.002. PubMed PMID: 28740875. PubMed PMCID: PMC5506712.
  4. Yu M, Lee JH, Jang HS, Jeon DM, Cheon JS, Lee HC, Lee JH. A comparison of dosimetric parameters between tomotherapy and three-dimensional conformal radiotherapy in rectal cancer. Radiat Oncol. 2013;8:181. doi: 10.1186/1748-717X-8-181. PubMed PMID: 23866263. PubMed PMCID: PMC3721992.
  5. Teoh S, Muirhead R. Rectal Radiotherapy--Intensity-modulated Radiotherapy Delivery, Delineation and Doses. Clin Oncol (R Coll Radiol). 2016;28(2):93-102. doi: 10.1016/j.clon.2015.10.012. PubMed PMID: 26643092.
  6. Sterzing F, Kalz J, Sroka-Perez G, Schubert K, Bischof M, Roder F, et al. Megavoltage CT in helical tomotherapy - clinical advantages and limitations of special physical characteristics. Technol Cancer Res Treat. 2009;8(5):343-52. doi: 10.1177/153303460900800504. PubMed PMID: 19754210.
  7. Metcalfe P, Liney GP, Holloway L, Walker A, Barton M, Delaney GP, et al. The potential for an enhanced role for MRI in radiation-therapy treatment planning. Technol Cancer Res Treat. 2013;12(5):429-46. doi: 10.7785/tcrt.2012.500342. PubMed PMID: 23617289. PubMed PMCID: PMC4527434.
  8. Brunt JN. Computed tomography-magnetic resonance image registration in radiotherapy treatment planning. Clin Oncol (R Coll Radiol). 2010;22(8):688-97. doi: 10.1016/j.clon.2010.06.016. PubMed PMID: 20674300.
  9. Sarolkar A, Singh SN, Bagdare P, Bhandari V, Lodi AI, Moharir S. To evaluate volume changes on computerized tomography scan and magnetic resonance imaging-based delineation during radiotherapy treatment planning in prostate cancer. J Cancer Res Ther. 2021;17(2):379-82. doi: 10.4103/jcrt.JCRT_839_18. PubMed PMID: 34121680.
  10. Tan J, Lim Joon D, Fitt G, Wada M, Lim Joon M, Mercuri A, et al. The utility of multimodality imaging with CT and MRI in defining rectal tumour volumes for radiotherapy treatment planning: a pilot study. J Med Imaging Radiat Oncol. 2010;54(6):562-8. doi: 10.1111/j.1754-9485.2010.02212.x. PubMed PMID: 21199435.
  11. Bird D, Nix MG, McCallum H, Teo M, Gilbert A, Casanova N, et al. The benefit of MR-only radiotherapy treatment planning for anal and rectal cancers: A planning study. J Appl Clin Med Phys. 2021;22(11):41-53. doi: 10.1002/acm2.13423. PubMed PMID: 34687138. PubMed PMCID: PMC8598134.
  12. Gwynne S, Mukherjee S, Webster R, Spezi E, Staffurth J, Coles B, Adams R. Imaging for target volume delineation in rectal cancer radiotherapy--a systematic review. Clin Oncol (R Coll Radiol). 2012;24(1):52-63. doi: 10.1016/j.clon.2011.10.001. PubMed PMID: 22035634.
  13. Oh S, Kim S. Deformable image registration in radiation therapy. Radiat Oncol J. 2017;35(2):101-11. doi: 10.3857/roj.2017.00325. PubMed PMID: 28712282. PubMed PMCID: PMC5518453.
  14. Myerson RJ, Garofalo MC, El Naqa I, Abrams RA, Apte A, Bosch WR, et al. Elective clinical target volumes for conformal therapy in anorectal cancer: a radiation therapy oncology group consensus panel contouring atlas. Int J Radiat Oncol Biol Phys. 2009;74(3):824-30. doi: 10.1016/j.ijrobp.2008.08.070. PubMed PMID: 19117696. PubMed PMCID: PMC2709288.
  15. Feuvret L, Noël G, Mazeron JJ, Bey P. Conformity index: a review. Int J Radiat Oncol Biol Phys. 2006;64(2):333-42. doi: 10.1016/j.ijrobp.2005.09.028. PubMed PMID: 16414369.
  16. Shaw E, Kline R, Gillin M, Souhami L, Hirschfeld A, Dinapoli R, Martin L. Radiation Therapy Oncology Group: radiosurgery quality assurance guidelines. Int J Radiat Oncol Biol Phys. 1993;27(5):1231-9. doi: 10.1016/0360-3016(93)90548-a. PubMed PMID: 8262852.
  17. Wang YY, Zhe H. Clinical application of multimodality imaging in radiotherapy treatment planning for rectal cancer. Cancer Imaging. 2013;13(4):495-501. doi: 10.1102/1470-7330.2013.0046. PubMed PMID: 24334539. PubMed PMCID: PMC3864219.
  18. Thorwarth D, Low DA. Technical Challenges of Real-Time Adaptive MR-Guided Radiotherapy. Front Oncol. 2021;11:634507. doi: 10.3389/fonc.2021.634507. PubMed PMID: 33763369. PubMed PMCID: PMC7982516.
  19. O’Neill BD, Salerno G, Thomas K, Tait DM, Brown G. MR vs CT imaging: low rectal cancer tumour delineation for three-dimensional conformal radiotherapy. Br J Radiol. 2009;82(978):509-13. doi: 10.1259/bjr/60198873. PubMed PMID: 19153180.
  20. Holyoake DLP, Partridge M, Hawkins MA. Systematic review and meta-analysis of small bowel dose-volume and acute toxicity in conventionally-fractionated rectal cancer radiotherapy. Radiother Oncol. 2019;138:38-44. doi: 10.1016/j.radonc.2019.05.001. PubMed PMID: 31136961.
  21. Ugurluer G, Akbas T, Arpaci T, Ozcan N, Serin M. Bone complications after pelvic radiation therapy: evaluation with MRI. J Med Imaging Radiat Oncol. 2014;58(3):334-40. doi: 10.1111/1754-9485.12176. PubMed PMID: 24716673.