Document Type : Original Research


1 Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

2 Department of Physics, Jackson State University (JSU), Jackson, Mississippi, USA

3 SpinTecx, Jackson, Mississippi, USA

4 Department of Radiation Oncology, Community Health Systems (CHS) Cancer Network, Jackson, Mississippi, USA

5 Department of Radiation Oncology, UT Southwestern Medical Center, 2280 Inwood Rd, EC2.242, Dallas, TX 75235, USA

6 Signal and Image Processing Lab (SIPL), School of Electrical and Computer Eng, Shiraz University, Shiraz, Iran

7 Department of Radiology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran

8 Physics Unit, Department of Radio-Oncology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran



Background: The BEBIG Portio multi-channel applicator provides better target dose coverage and sparing organs-at-risk compared to a single-channel cylinder. However, artifacts and distortions of Portio in magnetic resonance images (MRI) have not yet been reported.
Objective: We aimed to quantify the artifacts and distortions in its 1.5-Tesla MR images before clinical use.
Material and Methods: In this experimental study, we employed a gelatin-filled phantom to conduct our measurements. T2-weighted (T2W) images were examined for artifacts and distortions. Computed tomography (CT) images were used as a reference to assess image distortions. Artifact severity was measured by recording the full-width-at-half-maximum (FWHM) image pixel values at various positions along the length of the applicator/channels. CT and MRI-based applicator reconstruction accuracy were then compared, and signal-to-noise ratio (SNR) and contrast were also determined for the applicator images.
Results: The applicator distortion level for the Portio applicator was less than the image spatial resolution (0.5±0.5 pixels). The average FWHM for the tandem applicator images was 5.23±0.39 mm, while it was 3.21±0.37 mm for all channels (compared to their actual diameters of 5.0 mm and 3.0 mm, respectively). The average applicator reconstruction difference between CT and MR images was 0.75±0.30 mm overall source dwell positions. The image SNR and contrast were both acceptable. 
Conclusion: These findings indicate that the Portio applicator has a satisfactory low level of artifacts and image distortions in 1.5-Tesla, T2W images. It may, therefore, be a promising option for MRI-guided multi-channel vaginal brachytherapy.


Abolfazl Kanani (Google Scholar)

Mohammad Amin Mosleh-Shirazi (Google Scholar)


  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-49. doi: 10.3322/caac.21660. PubMed PMID: 33538338.
  2. Nout RA, Smit V, Putter H, Jürgenliemk-Schulz IM, Jobsen J, Lutgenes L, et al. Vaginal brachytherapy versus pelvic external beam radiotherapy for patients with endometrial cancer of high-intermediate risk (PORTEC-2): an open-label, non-inferiority, randomised trial. 2010;375(9717):816-23. doi: 10.1016/S0140-6736(09)62163-2. PubMed PMID: 20206777.
  3. Nout RA, Putter H, Jürgenliemk-Schulz IM, Jobsen J, Lutgenes L, Van Der Steen-Banasik E, et al. Five-year quality of life of endometrial cancer patients treated in the randomised Post Operative Radiation Therapy in Endometrial Cancer (PORTEC-2) trial and comparison with norm data. Eur J Cancer. 2012;48(11):1638-48. doi: 10.1016/j.ejca.2011.11.014. PubMed PMID: 22176868.
  4. De Boer SM, Nout RA, Jürgenliemk-Schulz IM, Jobsen J, Lutgens Ludy CHW, Van Der Steen-Banasik E, et al. Long-term impact of endometrial cancer diagnosis and treatment on health-related quality of life and cancer survivorship: results from the randomized PORTEC-2 trial. Int J Radiat Oncol Biol Phys. 2015;93(4):797-809. doi: 10.1016/j.ijrobp.2015.08.023. PubMed PMID: 26530748.
  5. Viswanathan AN, Erickson BA. Three-dimensional imaging in gynecologic brachytherapy: a survey of the American Brachytherapy Society. Int J Radiat Oncol Biol Phys. 2010;76(1):104-9. doi: 10.1016/j.ijrobp.2009.01.043. PubMed PMID: 19619956.
  6. Haie-Meder C, Pötter R, Van Limbergen E, Briot E, De Brabandere M, Dimopoulos J, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol. 2005;74(3):235-45. doi: 10.1016/j.radonc.2004.12.015. PubMed PMID: 15763303.
  7. Pötter R, Haie-Meder C, Van Limbergen E, Barillot I, De Brabandere M, Dimopoulos J, et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy—3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol. 2006;78(1):67-77. doi: 10.1016/j.radonc.2005.11.014. PubMed PMID: 16403584.
  8. Schwarz JK, Beriwal S, Esthappan J, Erickson B, Feltmate C, Fyles A, et al. Consensus statement for brachytherapy for the treatment of medically inoperable endometrial cancer. 2015;14(5):587-99. doi: 10.1016/j.brachy.2015.06.002. PubMed PMID: 26186975.
  9. Kamrava M, Leung E, Bachand F, Beriwal S, Chargari C, D’Souza D, et al. GEC-ESTRO (ACROP)–ABS–CBG consensus brachytherapy target definition guidelines for recurrent endometrial and cervical tumors in the vagina. Int J Radiat Oncol Biol Phys. 2023;115(3):654-63. doi: 10.1016/j.ijrobp.2022.09.072. PubMed PMID: 36191741.
  10. Fagerstrom JM, Kaur S. Simple phantom fabrication for MRI-based HDR brachytherapy applicator commissioning. J Appl Clin Med Phys. 2020;21(11):283-87. doi: 10.1002/acm2.13039. PubMed PMID: 33016469. PubMed PMCID: PMC7700937.
  11. Kanani A, Owrangi AM, Mosleh-Shirazi MA. Comprehensive methodology for commissioning modern 3D-image-based treatment planning systems for high dose rate gynaecological brachytherapy: A review. Phys Med. 2020;77:21-29. doi: 10.1016/j.ejmp.2020.07.031. PubMed PMID: 32768917.
  12. Glaser SM, Kim H, Beriwal S. Multi-Channel Vaginal Cylinder Brachytherapy: Impact of Tumor Size and Location on Dose to Organs at Risk. 2015;14:S78. doi: 10.1016/j.brachy.2015.08.009. PubMed PMID: 26412618.
  13. Gebhardt BJ, Vargo JA, Kim H, Houser CJ, Glaser SM, Sukumvanich P, et al. Image-based multichannel vaginal cylinder brachytherapy for the definitive treatment of gynecologic malignancies in the vagina. Gynecol Oncol. 2018;150(2):293-99. doi: 10.1016/j.ygyno.2018.06.011. PubMed PMID: 29929925. PubMed PMCID: PMC7409556.
  14. Rishi KS, David S, Pathikonda M, Ramachandra P, Giri GV, Vadaparty A, et al. Preliminary clinical outcomes of patients treated with vaginal brachytherapy alone using multi-channel vaginal brachytherapy applicator in operated early-stage endometrial cancer. Rep Pract Oncol Radiother. 2021;26(1):43-49. doi: 10.5603/RPOR.a2021.0007. PubMed PMID: 33948301. PubMed PMCID: PMC8086707.
  15. Owrangi AM, Jolly S, Balter JM, Cao Y, Maturen K, Young L, et al. Clinical implementation of MR-guided vaginal cylinder brachytherapy. J Appl Clin Med Phys. 2015;16(6):490-500. doi: 10.1120/jacmp.v16i6.5460. PubMed PMID: 26699556. PubMed PMCID: PMC5691024.
  16. Haack S, Nielsen SK, Lindegaard JC, Gelineck J, Tanderup K. Applicator reconstruction in MRI 3D image-based dose planning of brachytherapy for cervical cancer. Radiother Oncol. 2009;91(2):187-93. doi: 10.1016/j.radonc.2008.09.002. PubMed PMID: 18977049.
  17. Aubry JF, Cheung J, Morin O, Beaulieu L, Hsu IC, Pouliot J. Investigation of geometric distortions on magnetic resonance and cone beam computed tomography images used for planning and verification of high–dose rate brachytherapy cervical cancer treatment. Brachytherapy. 2010;9(3):266-73. doi: 10.1016/j.brachy.2009.09.004. PubMed PMID: 20149759.
  18. Kanani A, Owrangi A, Yazdi M, Fatemi-Ardekani A, Mosleh-Shirazi MA. Development of a multi-purpose quality control phantom for MRI-based treatment planning in high-dose-rate brachytherapy of cervical cancer. J Contemp Brachytherapy. 2023;15(1):57-68. doi: 10.5114/jcb.2023.125014. PubMed PMID: 36970435. PubMed PMCID: PMC10034728.
  19. Dimopoulos JC, Petrow P, Tanderup K, Petric P, Berger D, Kirisits C, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): Basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy. Radiother Oncol. 2012;103(1):113-22. doi: 10.1016/j.radonc.2011.12.024. PubMed PMID: 22296748. PubMed PMCID: PMC3336085.
  20. Prisciandaro J, Zoberi J, Cohen Ga, Kim Y, Johonson P, Paulson E, et al. AAPM task group report 303 endorsed by the ABS: MRI implementation in HDR brachytherapy—Considerations from simulation to treatment. Med Phys. 2022;49(8):e983-1023. doi: 10.1002/mp.15713. PubMed PMID: 35662032.
  21. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671-75. doi: 10.1038/nmeth.2089. PubMed PMID: 22930834. PubMed PMCID: PMC5554542.
  22. Soliman AS, Elzibak A, Easton H, Kim JY, Han DY, Safigholi H, et al. Quantitative MRI assessment of a novel direction modulated brachytherapy tandem applicator for cervical cancer at 1.5 T. Radiother Oncol. 2016;120(3):500-6. doi: 10.1016/j.radonc.2016.07.006. PubMed PMID: 27443448.
  23. Rao YJ, Zoberi JE, Kadbi M, Grigsby PW, Cammin J, Mackey SL, et al. Metal artifact reduction in MRI-based cervical cancer intracavitary brachytherapy. Phys Med Biol. 2017;62(8):3011. doi: 10.1088/1361-6560/62/8/3011. PubMed PMID: 28306556.
  24. Firbank M, Coulthard A, Harrison RM, Williams ED. A comparison of two methods for measuring the signal to noise ratio on MR images. Phys Med Biol. 1999;44(12):N261-4. doi: 10.1088/0031-9155/44/12/403. PubMed PMID: 10616158.
  25. Soliman AS, Owrangi A, Ravi A, Song WY. Metal artefacts in MRI-guided brachytherapy of cervical cancer. J Contemp Brachytherapy. 2016;8(4):363-69. doi: 10.5114/jcb.2016.61817. PubMed PMID: 27648092. PubMed PMCID: PMC5018526.
  26. Tanderup K, Hellebust TP, Lang S, Granfeldt J, Potter R, Lindegaard J, et al. Consequences of random and systematic reconstruction uncertainties in 3D image based brachytherapy in cervical cancer. Radiother Oncol. 2008;89(2):156-63. doi: 10.1016/j.radonc.2008.06.010. PubMed PMID: 18692265.
  27. Krempien RC, Daeuber S, Hensley FW, Wannenmacher M, Harms W. Image fusion of CT and MRI data enables improved target volume definition in 3D-brachytherapy treatment planning. Brachytherapy. 2003;2(3):164-71. doi: 10.1016/S1538-4721(03)00133-8. PubMed PMID: 15062139.
  28. Kim Y, Muruganandham M, Modrick JM, Bayouth JE. Evaluation of artifacts and distortions of titanium applicators on 3.0-Tesla MRI: feasibility of titanium applicators in MRI-guided brachytherapy for gynecological cancer. Int J Radiat Oncol Biol Phys. 2011;80(3):947-55. doi: 10.1016/j.ijrobp.2010.07.1981. PubMed PMID: 20934275.
  29. Tanderup K, Nesvacil N, Pötter R, Kirisits C. Uncertainties in image guided adaptive cervix cancer brachytherapy: impact on planning and prescription. Radiother Oncol. 2013;107(1):1-5. doi: 10.1016/j.radonc.2013.02.014. PubMed PMID: 23541642.
  30. Wills R, Lowe G, Inchley D, Anderson C, Beenstock V, Hoskin P. Applicator reconstruction for HDR cervix treatment planning using images from 0.35 T open MR scanner. Radiother Oncol. 2010;94(3):346-52. doi: 10.1016/j.radonc.2009.10.015. PubMed PMID: 19931929.
  31. Hu Y, Esthappan J, Mutic S, Richardson S, Gay HA, Schwarz JK. Improve definition of titanium tandems in MR-guided high dose rate brachytherapy for cervical cancer using proton density weighted MRI. Radiat Oncol. 2013;8:16. doi: 10.1186/1748-717X-8-16. PubMed PMID: 23327682. PubMed PMCID: PMC3556165.
  32. Sales CP, Carvalho HDA, Taverna KC, Pastorello BF, Rubo RA, Borgonovoi AF, et al. Evaluation of different magnetic resonance imaging contrast materials to be used as dummy markers in image-guided brachytherapy for gynecologic malignancies. Radiol Bras. 2016;49:165-9. doi: 10.1590/0100-3984.2015.0004. PubMed PMID: 27403016. PubMed PMCID: PMC4938446.