Document Type : Original Research


Department of Radiation Sciences, School of Paramedical Sciences, Yasuj University of Medical Sciences, Yasuj, Iran



Background: The reliance on specialized diagnostic techniques is on the rise across various medical fields, including dentistry. While orthopantomogram (OPG), offers many advantages in terms of dental diagnosis, it also poses potential risks to sensitive organs, notably the thyroid gland. 
Objective: This study aimed to evaluate the fluctuations in the absorbed dose within the thyroid gland during swallowing while undergoing an OPG procedure.
Material and Methods: In this computational simulation study, the BEAMnrc Monte Carlo code was employed to model an OPG machine, using 700 million particles across the energy range of 60-75 keV, which is standard for OPG procedures. The Monte Carlo (MC) model was cross-verified by comparing the derived spectra with those in the IPEM Report 78. A head and neck phantom was constructed using CT scan images with a slice thickness of 5 mm. This phantom underwent simulated beam exposure under two conditions: pre-swallow and post-swallow. Subsequently, the percentage depth dose was measured and contrasted across different depths. 
Results: After swallowing, there was an increase in the absorbed dose across all three regions of the thyroid (right, left, and center). Notably, regions near the hyoid bone exhibited a particularly significant increase in dose. In certain areas, the absorbed dose even tripled when compared to the pre-swallowing state.  
Conclusion: The findings indicate that during OPG imaging, swallowing can lead to an increased radiation dose to the thyroid gland. Given the thyroid’s heightened sensitivity to radiation, such an increase in dosage is noteworthy.