Document Type : Original Research

Authors

1 Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

2 Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

3 Research Center for the Physics of Matter and Radiation, Namur Research Institute for Life Sciences, University of Namur, Belgium

10.31661/jbpe.v0i0.2312-1693

Abstract

Background: Photothermal therapy (PTT) is one of the effective and non-invasive strategies which hold great promise for improving the treatment of cancer cells. PTT is based on activating a photosensitizer by infrared light irradiation and producing heat and reactive species and apoptosis in the tumor area.
Objective: The aim of this study was to investigate the effect of photothermal/chemotherapy on melanoma cancer cells using poly (2-amino phenol)/gold (P2AO/AuNPs) and doxorubicin (DOX).
Material and Methods: In this experimental study, nanoparticles of P2AO/AuNPs were synthesized, and their mixture with DOX was applied as a photosensitizer for photothermal/chemotherapy of a C540 (B16-F10) melanoma cell line.
Results: P2AO/AuNPs generated heat and cytotoxic responsive oxygen species (ROS) upon 808-nm light irradiation with simultaneous intensifying DOX therapeutic effect under domination of synergism effects between light irradiation, P2AO/AuNPs, and doxorubicin. Cell treatment with both P2AO/AuNPs and DOX resulted in a considerable increase in necroptotic cells to 61% with a significant decrease in the living cells (39%).  
Conclusion: P2AO/AuNPs provided a platform for light absorption and intensifying DOX therapeutic effect. This study approved the applicability of a new photothermal/chemotherapy by domination of synergistic effects attained by combination of laser light, P2AO, AuNPs, and DOX.

Highlights

Naghmeh Sattarahmady (Google Scholar)

Keywords

  1. Castro-Pérez E, Singh M, Sadangi S, Mela-Sánchez C, Setaluri V. Connecting the dots: Melanoma cell of origin, tumor cell plasticity, trans-differentiation, and drug resistance. Pigment Cell Melanoma Res. 2023;36(5):330-47. doi: 10.1111/pcmr.13092. PubMed PMID: 37132530. PubMed PMCID: PMC10524512.
  2. Dos Reis FD, Jerónimo C, Correia MP. Epigenetic modulation and prostate cancer: Paving the way for NK cell anti-tumor immunity. Front Immunol. 2023;14:1152572. doi: 10.3389/fimmu.2023.1152572. PubMed PMID: 37090711. PubMed PMCID: PMC10113550.
  3. Al-Thubiani W. The Role of P-Glycoprotein (P-gp) in Cancer Multidrug Resistance (MDR): Challenges for Inhibiting P-gp in the Context of Overcoming MDR. J Pharm Res Int. 2023;35(23):44-58. doi: 10.9734/jpri/2023/v35i237422.
  4. Wang J, Wu SG. Breast Cancer: An Overview of Current Therapeutic Strategies, Challenge, and Perspectives. Breast Cancer (Dove Med Press). 2023;15:721-30. doi: 10.2147/BCTT.S432526. PubMed PMID: 37881514. PubMed PMCID: PMC10596062.
  5. Lopes J, Rodrigues CMP, Gaspar MM, Reis CP. How to Treat Melanoma? The Current Status of Innovative Nanotechnological Strategies and the Role of Minimally Invasive Approaches like PTT and PDT. 2022;14(9):1817. doi: 10.3390/pharmaceutics14091817. PubMed PMID: 36145569. PubMed PMCID: PMC9504126.
  6. Nirmala MJ, Kizhuveetil U, Johnson A, G Balaji, Nagarajan R, Muthuvijayan V. Cancer nanomedicine: a review of nano-therapeutics and challenges ahead. RSC Adv. 2023;13(13):8606-29. doi: 10.1039/d2ra07863e. PubMed PMID: 36926304. PubMed PMCID: PMC10013677.
  7. Chen Y, Li H, Deng Y, Sun H, Ke X, Ci T. Near-infrared light triggered drug delivery system for higher efficacy of combined chemo-photothermal treatment. Acta Biomater. 2017;51:374-92. doi: 10.1016/j.actbio.2016.12.004. PubMed PMID: 28088668.
  8. Hou YJ, Yang XX, Liu RQ, Zhao D, Guo CX, Zhu AC, et al. Pathological Mechanism of Photodynamic Therapy and Photothermal Therapy Based on Nanoparticles. Int J Nanomedicine. 2020;15:6827-38. doi: 10.2147/IJN.S269321. PubMed PMID: 32982235. PubMed PMCID: PMC7501968.
  9. Zhang A, Pan S, Zhang Y, Chang J, et al. Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy. 2019;9(12):3443-58. doi: 10.7150/thno.33266. PubMed PMID: 31281489. PubMed PMCID: PMC6587161.
  10. Yang T, Wang H, Zhou Q, Huang W, Zhang J, Yu Y, et al. Mild chemo-photothermal synergistic therapy for tumors based on gold-nanoparticles coupled with metformin. J ACS Appl Nano Mater. 2023;6(7):5729-36. doi: 10.1021/acsanm.3c00140.
  11. Li M, Yang J, Yao X, Li X, Xu Z, Tang S, et al. Multifunctional Mesoporous Silica-Coated Gold Nanorods Mediate Mild Photothermal Heating-Enhanced Gene/Immunotherapy for Colorectal Cancer. 2023;15(3):854. doi: 10.3390/pharmaceutics15030854. PubMed PMID: 36986715. PubMed PMCID: PMC10057058.
  12. Bonamy C, Pesnel S, Ben Haddada M, Gorgette O, Schmitt C, Morel AL, Sauvonnet N. Impact of Green Gold Nanoparticle Coating on Internalization, Trafficking, and Efficiency for Photothermal Therapy of Skin Cancer. ACS Omega. 2023;8(4):4092-105. doi: 10.1021/acsomega.2c07054. PubMed PMID: 36743010. PubMed PMCID: PMC9893490.
  13. Simón M, Jørgensen JT, Norregaard K, Henriksen JR, Clergeaud G, Andresen TL, et al. Neoadjuvant Gold Nanoshell-Based Photothermal Therapy Combined with Liposomal Doxorubicin in a Mouse Model of Colorectal Cancer. Int J Nanomedicine. 2023;18:829-41. doi: 10.2147/IJN.S389260. PubMed PMID: 36824412. PubMed PMCID: PMC9942687.
  14. Zahraie N, Perota G, Dehdari Vais R, Sattarahmady N. Simultaneous chemotherapy/sonodynamic therapy of the melanoma cancer cells using a gold-paclitaxel nanostructure. Photodiagnosis Photodyn Ther. 2022;39:102991. doi: 10.1016/j.pdpdt.2022.102991. PubMed PMID: 35779857.
  15. Zhan H, Song W, Gu M, Zhao H, Liu Y, Liu B, Wang J. A New Gold Nanoparticles and Paclitaxel Co-Delivery System for Enhanced Anti-Cancer Effect Through Chemo-Photothermal Combination. J Biomed Nanotechnol. 2022;18(4):957-75. doi: 10.1166/jbn.2022.3309. PubMed PMID: 35854456.
  16. Benny Mattam L, Bijoy A, Abraham Thadathil D, George L, Varghese A. Conducting polymers: a versatile material for biomedical applications. 2022;7(42):e202201765. doi: 10.1002/slct.202201765.
  17. Salari N, Faraji F, Torghabeh FM, Faraji F, Mansouri K, Abam F, et al. Polymer-based drug delivery systems for anticancer drugs: A systematic review. Cancer Treat Res Commun. 2022;32:100605. doi: 10.1016/j.ctarc.2022.100605. PubMed PMID: 35816909.
  18. Stocco E, Barbon S, Emmi A, Tiengo C, Macchi V, De Caro R, Porzionato A. Bridging Gaps in Peripheral Nerves: From Current Strategies to Future Perspectives in Conduit Design. Int J Mol Sci. 2023;24(11):9170. doi: 10.3390/ijms24119170. PubMed PMID: 37298122. PubMed PMCID: PMC10252835.
  19. Yazdani Z, Yadegari H, Heli H. A molecularly imprinted electrochemical nanobiosensor for prostate specific antigen determination. Anal Biochem. 2019;566:116-25. doi: 10.1016/j.ab.2018.11.020. PubMed PMID: 30472220.
  20. Pishahang J, Amiri HB, Heli H. Synthesis of carbon nanoparticles-poly (ortho-aminophenol) nanocomposite and its application for electroanalysis of iodate. J Sens Actuators B Chem. 2018;256:878-87. doi: 10.1016/j.snb.2017.10.030.
  21. Vais RD, Heli H, Sattarahmady N, Barazesh A. A novel and ultrasensitive label-free electrochemical DNA biosensor for Trichomonas vaginalis detection based on a nanostructured film of poly (ortho-aminophenol). J Synth Met. 2022;287:117082. doi: 10.1016/j.synthmet.2022.117082.
  22. Narkar AR, Tong Z, Soman P, Henderson JH. Smart biomaterial platforms: Controlling and being controlled by cells. 2022;283:121450. doi: 10.1016/j.biomaterials.2022.121450. PubMed PMID: 35247636. PubMed PMCID: PMC8977253.
  23. Wang Y, Wang J, Jiao Y, Chen K, Chen T, Wu X, et al. Redox-active polyphenol nanoparticles deprive endogenous glutathione of electrons for ROS generation and tumor chemodynamic therapy. Acta Biomater. 2023;172:423-40. doi: 10.1016/j.actbio.2023.09.037. PubMed PMID: 37778486.
  24. Rathod S, Desai H, Patil R, Sarolia J. Non-ionic Surfactants as a P-Glycoprotein(P-gp) Efflux Inhibitor for Optimal Drug Delivery-A Concise Outlook. AAPS PharmSciTech. 2022;23(1):55. doi: 10.1208/s12249-022-02211-1. PubMed PMID: 35043278.
  25. Liyanage PY, Hettiarachchi SD, Zhou Y, Ouhtit A, Seven ES, Oztan CY, et al. Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochim Biophys Acta Rev Cancer. 2019;1871(2):419-33. doi: 10.1016/j.bbcan.2019.04.006. PubMed PMID: 31034927. PubMed PMCID: PMC6549504.
  26. Attia MS, Elsebaey MT, Yahya G, Chopra H, Marzouk MA, Yahya A, Abdelkhalek AS. Pharmaceutical polymers and P-glycoprotein: Current trends and possible outcomes in drug delivery. J Mater Today Commun. 2023;34:105318. doi: 10.1016/j.mtcomm.2023.105318.
  27. Alshaer W, Alqudah DA, Wehaibi S, Abuarqoub D, Zihlif M, Hatmal MM, Awidi A. Downregulation of STAT3, β-Catenin, and Notch-1 by Single and Combinations of siRNA Treatment Enhance Chemosensitivity of Wild Type and Doxorubicin Resistant MCF7 Breast Cancer Cells to Doxorubicin. Int J Mol Sci. 2019;20(15):3696. doi: 10.3390/ijms20153696. PubMed PMID: 31357721. PubMed PMCID: PMC6696135.
  28. Yalamarty SSK, Filipczak N, Li X, Pathrikar TV, Cotter C, Torchilin VP. Co-Delivery of siRNA and Chemotherapeutic Drug Using 2C5 Antibody-Targeted Dendrimer-Based Mixed Micelles for Multidrug Resistant Cancers. Pharmaceutics. 2022;14(7):1470. doi: 10.3390/pharmaceutics14071470. PubMed PMID: 35890364. PubMed PMCID: PMC9324017.
  29. Boomi P, Anandha Raj J, Palaniappan SP, Poorani G, Selvam S, Gurumallesh Prabu H, et al. Improved conductivity and antibacterial activity of poly(2-aminothiophenol)-silver nanocomposite against human pathogens. J Photochem Photobiol B. 2018;178:323-9. doi: 10.1016/j.jphotobiol.2017.11.029. PubMed PMID: 29178993.
  30. Ciriello R, Graziano M, Bianco G, Guerrieri A. Electrosynthesized poly (o-aminophenol) films as biomimetic coatings for dopamine detection on Pt substrates. J Chemosensors. 2021;9(10):280. doi: 10.3390/chemosensors9100280.
  31. Nady N, El-Shazly AH, Soliman HMA, Kandil SH. Protein-Repellence PES Membranes Using Bio-grafting of Ortho-aminophenol. Polymers (Basel). 2016;8(8):306. doi: 10.3390/polym8080306. PubMed PMID: 30974579. PubMed PMCID: PMC6432355.
  32. Sattarahmady N, Tondro G, Gholchin M, Heli H. Gold nanoparticles biosensor of Brucella spp. genomic DNA: Visual and spectrophotometric detections. Biochem Eng J. 2015;97:1-7. doi: 10.1016/j.bej.2015.01.010.
  33. Heli H, Rahi A. Synthesis and Applications of Nanoflowers. Recent Pat Nanotechnol. 2016;10(2):86-115. doi: 10.2174/1872210510999160517102102. PubMed PMID: 27502388.
  34. Ma J, Motsinger-Reif A. Current Methods for Quantifying Drug Synergism. Proteom Bioinform. 2019;1(2):43-8. PubMed PMID: 32043089. PubMed PMCID: PMC7010330.
  35. Xia Q, Huang J, Feng Q, Chen X, Liu X, Li X, et al. Size- and cell type-dependent cellular uptake, cytotoxicity and in vivo distribution of gold nanoparticles. Int J Nanomedicine. 2019;14:6957-70. doi: 10.2147/IJN.S214008. PubMed PMID: 32021157. PubMed PMCID: PMC6717860.
  36. Huo S, Ma H, Huang K, Liu J, Wei T, Jin S, et al. Superior penetration and retention behavior of 50 nm gold nanoparticles in tumors. Cancer Res. 2013;73(1):319-30. doi: 10.1158/0008-5472.CAN-12-2071. PubMed PMID: 23074284.
  37. Lima‐Sousa R, Melo BL, Alves CG, Moreira AF, Mendonça AG, Correia IJ, et al. Combining Photothermal‐Photodynamic Therapy Mediated by Nanomaterials with Immune Checkpoint Blockade for Metastatic Cancer Treatment and Creation of Immune Memory. J Adv Funct Mater. 2021;31(29):2010777. doi: 10.1002/adfm.202010777.
  38. Kim B-S, Kumar D, Park CH, Kim CS. HSPA1A-siRNA nucleated gold nanorods for stimulated photothermal therapy through strategic heat shock to HSP70. J Mater Chem Front. 2021;5(17):6461-70. doi: 10.1039/D1QM00630D.
  39. Moros M, Lewinska A, Merola F, Ferraro P, Wnuk M, Tino A, Tortiglione C. Gold Nanorods and Nanoprisms Mediate Different Photothermal Cell Death Mechanisms In Vitro and In Vivo. ACS Appl Mater Interfaces. 2020;12(12):13718-30. doi: 10.1021/acsami.0c02022. PubMed PMID: 32134240.