Document Type : Review Article

Authors

1 Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

2 Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran

3 Department of Nuclear Engineering, School of Mechanical Engineering, Shiraz University, Shiraz, Iran

4 Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran

5 Department of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran

6 Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

10.31661/jbpe.v0i0.2404-1742

Abstract

Radiation protection is an essential issue in diagnostic radiology to ensure the safety of patients, healthcare professionals, and the general public. Lead has traditionally been used as a shielding material due to its high atomic number, high density, and effectiveness in attenuating radiation. However, some concerns related to the long-term health effects of toxicity, environmental disease as well as heavy weight of lead have led to the search for alternative lead-free shielding materials. Lead‑free multilayered polymer composites and non-lead nano-composite shields have been suggested as effective shielding materials to replace conventional lead-based and single metal shields. Using several elements with high density and atomic number, such as bismuth, barium, gadolinium, and tungsten, offer significant enhancements in the shielding ability of composites. This review focuses on the development and use of lead-free materials for radiation shielding in medical settings. It discusses the drawbacks of traditional lead shielding, such as toxicity, weight, and recycling challenges, and highlights the benefits of lead-free alternatives. 

Highlights

Arash Safari (Google Scholar)

Seyed Mohammad Javad Mortazavi (Google Scholar)

Keywords

  1. Vafapour H, Salehi Z. Assessment of the Absorbed Dose Variations in the Thyroid Gland Exposed to Orthopantomography (OPG) while Swallowing: A Novel Approach to Radiation Protection. J Biomed Phys Eng. doi: 10.31661/jbpe.v0i0.2305-1622.
  2. Hamzian N, Asadian S, Zarghani H. A Study of Radiation Protection Standards Compliance in Hospital Radiographic Departments in Iran. J Biomed Phys Eng. 2022;12(5):513-20. doi: 10.31661/jbpe.v0i0.2108-1375. PubMed PMID: 36313405. PubMed PMCID: PMC9589086.
  3. Mohebbi Z, Ershadpoor R, Ostovari M, Rakhshan M. Radiation Protection Capability of Operating Room Personnel: Development and Psychometric Properties of a Questionnaire. J Biomed Phys Eng. 2021;11(5):603-12. doi: 10.31661/jbpe.v0i0.2008-1161. PubMed PMID: 34722405. PubMed PMCID: PMC8546165.
  4. Shoag JM, Michael Burns K, Kahlon SS, Parsons PJ, Bijur PE, Taragin BH, Markowitz M. Lead poisoning risk assessment of radiology workers using lead shields. Arch Environ Occup Health. 2020;75(1):60-4. doi: 10.1080/19338244.2018.1553843. PubMed PMID: 30676933.
  5. Klein RC, Weilandics C. Potential health hazards from lead shielding. Am Ind Hyg Assoc J. 1996;57(12):1124-6. doi: 10.1080/15428119691014215. PubMed PMID: 8976587.
  6. Wani AL, Ara A, Usmani JA. Lead toxicity: a review. Interdiscip Toxicol. 2015;8(2):55-64. doi: 10.1515/intox-2015-0009. PubMed PMID: 27486361. PubMed PMCID: PMC4961898.
  7. Brodkin E, Copes R, Mattman A, Kennedy J, Kling R, Yassi A. Lead and mercury exposures: interpretation and action. 2007;176(1):59-63. doi: 10.1503/cmaj.060790. PubMed PMID: 17200393. PubMed PMCID: PMC1764574.
  8. Schlattl H, Zankl M, Eder H, Hoeschen C. Shielding properties of lead-free protective clothing and their impact on radiation doses. Med Phys. 2007;34(11):4270-80. doi: 10.1118/1.2786861. PubMed PMID: 18072491.
  9. Ahamed M, Siddiqui MK. Environmental lead toxicity and nutritional factors. Clin Nutr. 2007;26(4):400-8. doi: 10.1016/j.clnu.2007.03.010. PubMed PMID: 17499891.
  10. Baldwin DR, Marshall WJ. Heavy metal poisoning and its laboratory investigation. Ann Clin Biochem. 1999;36(Pt3):267-300. doi: 10.1177/000456329903600301. PubMed PMID: 10376071.
  11. Heath LM, Soole KL, McLaughlin ML, McEwan GT, Edwards JW. Toxicity of environmental lead and the influence of intestinal absorption in children. Rev Environ Health. 2003;18(4):231-50. doi: 10.1515/reveh.2003.18.4.231. PubMed PMID: 15025188.
  12. Hanna-Attisha M, Lanphear B, Landrigan P. Lead Poisoning in the 21st Century: The Silent Epidemic Continues. Am J Public Health. 2018;108(11):1430. doi: 10.2105/AJPH.2018.304725. PubMed PMID: 30303719. PubMed PMCID: PMC6187797.
  13. Kim SC. Construction of a Medical radiation-shielding environment by analyzing the weaving characteristics and shielding performance of shielding fibers using x-ray-impermeable materials. Applied Sciences. 2021;11(4):1705. doi: 10.3390/app11041705.
  14. Rees CR, Duncan BWC. Get the Lead off Our Backs! Tech Vasc Interv Radiol. 2018;21(1):7-15. doi: 10.1053/j.tvir.2017.12.003. PubMed PMID: 29472000.
  15. Moore B, vanSonnenberg E, Casola G, Novelline RA. The relationship between back pain and lead apron use in radiologists. AJR Am J Roentgenol. 1992;158(1):191-3. doi: 10.2214/ajr.158.1.1530763. PubMed PMID: 1530763.
  16. Monaco MGL, Carta A, Tamhid T, Porru S. Anti-X Apron Wearing and Musculoskeletal Problems Among Healthcare Workers: A Systematic Scoping Review. Int J Environ Res Public Health. 2020;17(16):5877. doi: 10.3390/ijerph17165877. PubMed PMID: 32823627. PubMed PMCID: PMC7459898.
  17. Ross AM, Segal J, Borenstein D, Jenkins E, Cho S. Prevalence of spinal disc disease among interventional cardiologists. Am J Cardiol. 1997;79(1):68-70. doi: 10.1016/s0002-9149(96)00678-9. PubMed PMID: 9024739.
  18. Pelz DM. Low back pain, lead aprons, and the angiographer. AJNR Am J Neuroradiol. 2000;21(7):1364. PubMed PMID: 10954297. PubMed PMCID: PMC8174912.
  19. Sonsilphong A, Wongkasem N. Light-weight radiation protection by non-lead materials in X-ray regimes. International Conference on Electromagnetics in Advanced Applications (ICEAA); Palm Beach, Aruba: IEEE; 2014.
  20. Li Z, Zhou W, Zhang X, Gao Y, Guo S. High-efficiency, flexibility and lead-free X-ray shielding multilayered polymer composites: layered structure design and shielding mechanism. Sci Rep. 2021;11(1):4384. doi: 10.1038/s41598-021-83031-4. PubMed PMID: 33623062. PubMed PMCID: PMC7902636.
  21. Mortazavi SMJ, Bevelacqua JJ, Rafiepour P, Sina S, Moradgholi J, Mortazavi A, Welsh JS. Lead-free, multilayered, and nanosized radiation shields in medical applications, industrial, and space research. In Advanced Radiation Shielding Materials. Elsevier; 2024. p. 305-22.
  22. Aghaz A, Faghihi R, Mortazavi S, Haghparast A, Mehdizadeh S, Sina S. Radiation attenuation properties of shields containing micro and Nano WO3 in diagnostic X-ray energy range. Int J Radiat Res. 2016;14(2):127-31.
  23. Kim J, Lee BC, Uhm YR, Miller WH. Enhancement of thermal neutron attenuation of nano-B4C,-BN dispersed neutron shielding polymer nanocomposites. Journal of Nuclear Materials. 2014;453(1-3):48-53. doi: 10.1016/j.jnucmat.2014.06.026.
  24. Mokhtari K, Saadi MK, Panahi HA, Jahanfarnia G. The shielding properties of the ordinary concrete reinforced with innovative nano polymer particles containing PbO–H3BO3 for dual protection against gamma and neutron radiations. Radiation Physics and Chemistry. 2021;189:109711. doi: 10.1016/j.radphyschem.2021.109711.
  25. Aghamiri MR, Mortazavi SMJ, Tayebi M, Mosleh-Shirazi MA, Baharvand H, Tavakkoli-Golpayegani A, Zeinali-Rafsanjani B. A novel design for production of efficient flexible lead-free shields against X-ray photons in diagnostic energy range. J Biomed Phys Eng. 2011;1(1)17-21.
  26. Mortazavi SMJ, Zahiri A, Shahbazi-Gahrouei D, Sina S, Haghani M. Designing a shield with lead-free polymer base with high radiation protection for X-ray photons in the range of diagnostic radiology using monte carlo simulation code MCNP5. Journal of Isfahan Medical School. 2016;34(385):637-41.
  27. Mortazavi SMJ, Kardan M, Sina S, Baharvand H, Sharafi N. Design and fabrication of high density borated polyethylene nanocomposites as a neutron shield. Int J Radiat Res. 2016;14(4):379-83.
  28. Moradgholi J, Mortazavi SMJ. Developing a radiation shield and investigating the mechanical properties of polyethylene-polyester/CdO bilayer composite. Ceramics International. 2022;48(4):5246-51. doi: 10.1016/j.ceramint.2021.11.065.
  29. Azman NZ, Siddiqui SA, Low IM. Characterisation of micro-sized and nano-sized tungsten oxide-epoxy composites for radiation shielding of diagnostic X-rays. Mater Sci Eng C. 2013;33(8):4952-7. doi: 10.1016/j.msec.2013.08.023. PubMed PMID: 24094209.
  30. Chai H, Tang X, Ni M, Chen F, Zhang Y, Chen D, Qiu Y. Preparation and properties of novel, flexible, lead‐free X‐ray‐shielding materials containing tungsten and bismuth (III) oxide. J Appl Polym Sci. 2016;133(10). doi: 10.1002/app.43012.
  31. Kazempour M, Saeedimoghadam M, Shekoohi Shooli F, Shokrpour N. Assessment of the Radiation Attenuation Properties of Several Lead Free Composites by Monte Carlo Simulation. J Biomed Phys Eng. 2015;5(2):67-76. PubMed PMID: 26157732. PubMed PMCID: PMC4479388.
  32. Shahbazi MA , Faghfouri L , Ferreira MPA , Figueiredo P , Maleki H , Sefat F , Hirvonen J , Santos HA. The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chem Soc Rev. 2020;49(4):1253-321. doi: 10.1039/c9cs00283a. PubMed PMID: 31998912.
  33. Adlienė D, Gilys L, Griškonis E. Development and characterization of new tungsten and tantalum containing composites for radiation shielding in medicine. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2020;467:21-6. doi: 10.1016/j.nimb.2020.01.027.
  34. Catuzzo P, Aimonetto S, Fanelli G, Marchisio P, Meloni T, Mistretta L, Pasquino M, et al. Dose reduction in multislice CT by means of bismuth shields: results of in vivo measurements and computed evaluation. Radiol Med. 2010;115(1):152-69. doi: 10.1007/s11547-009-0469-4 PubMed PMID: 20012921.
  35. Hohl C, Wildberger JE, Süss C, Thomas C, Mühlenbruch G, Schmidt T, et al. Radiation dose reduction to breast and thyroid during MDCT: effectiveness of an in-plane bismuth shield. Acta Radiol. 2006;47(6):562-7. doi: 10.1080/02841850600702150. PubMed PMID: 16875333.
  36. Wang J, Duan X, Christner JA, Leng S, Grant KL, McCollough CH. Bismuth shielding, organ-based tube current modulation, and global reduction of tube current for dose reduction to the eye at head CT. 2012;262(1):191-8. doi: 10.1148/radiol.11110470. PubMed PMID: 22190658.
  37. Abadi S, Mehrez H, Ursani A, Parker M, Paul N. Direct quantification of breast dose during coronary CT angiography and evaluation of dose reduction strategies. AJR Am J Roentgenol. 2011;196(2):W152-8. doi: 10.2214/AJR.10.4626. PubMed PMID: 21257856.
  38. Wang J, Duan X, Christner JA, Leng S, Yu L, McCollough CH. Radiation dose reduction to the breast in thoracic CT: comparison of bismuth shielding, organ-based tube current modulation, and use of a globally decreased tube current. Med Phys. 2011;38(11):6084-92. doi: 10.1118/1.3651489. PubMed PMID: 22047373.
  39. Yilmaz MH, Albayram S, Yaşar D, Ozer H, Adaletli I, Selçuk D, et al. Female breast radiation exposure during thorax multidetector computed tomography and the effectiveness of bismuth breast shield to reduce breast radiation dose. J Comput Assist Tomogr. 2007;31(1):138-42. doi: 10.1097/01.rct.0000235070.50055.e6. PubMed PMID: 17259846.
  40. Leswick DA, Hunt MM, Webster ST, Fladeland DA. Thyroid shields versus z-axis automatic tube current modulation for dose reduction at neck CT. 2008;249(2):572-80. doi: 10.1148/radiol.2492071430. PubMed PMID: 18780826.
  41. Chatterson LC, Leswick DA, Fladeland DA, Hunt MM, Webster ST. Lead versus bismuth-antimony shield for fetal dose reduction at different gestational ages at CT pulmonary angiography. Radiology. 2011;260(2):560-7. doi: 10.1148/radiol.11101575. PubMed PMID: 21555348.
  42. Lawrence S, Seeram E. The current use and effectiveness of bismuth shielding in computed tomography: a systematic review. Radiol Open J. 2017;2(1):7-16. doi: 10.17140/ROJ-2-113.
  43. Yu L, Yap PL, Santos A, Tran D, Losic D. Lightweight bismuth titanate (Bi4Ti3O12) nanoparticle-epoxy composite for advanced lead-free X-ray radiation shielding. ACS Applied Nano Materials. 2021;4(7):7471-8.
  44. Aral N, Duch MA, Ardanuy M. Material characterization and Monte Carlo simulation of lead and non-lead X-Ray shielding materials. Radiation Physics and Chemistry. 2020;174:108892. doi: 10.1016/j.radphyschem.2020.108892.
  45. Martinez TP, Cournoyer ME. Lead substitution and elimination study, part II. New Mexico: Los Alamos National Laboratory; 2001.
  46. Plionis A, Garcia S, Gonzales E, Porterfield D, Peterson D. Replacement of lead bricks with non-hazardous polymer-bismuth for low-energy gamma shielding. Journal of radioanalytical and nuclear chemistry. 2009;282(1):239-42. doi: 10.1007/s10967-009-0245-x.
  47. Peana M, Medici S, Dadar M, Zoroddu MA, Pelucelli A, Chasapis CT, Bjørklund G. Environmental barium: potential exposure and health-hazards. Arch Toxicol. 2021;95(8):2605-12. doi: 10.1007/s00204-021-03049-5. PubMed PMID: 33870439.
  48. Dibello PM, Manganaro JL, Aguinaldo ER, Mahmood T, Lindahl CB. Barium compounds. In: Kirk‐Othmer Encyclopedia of Chemical Technology. Wiley Online Library; 2000.
  49. Maghrabi HA, Vijayan A, Mohaddes F, Deb P, Wang L. Evaluation of X-ray radiation shielding performance of barium sulphate-coated fabrics. Fibers Polym. 2016;17:2047-54. doi: 10.1007/s12221-016-5850-z.
  50. Kim SC, Dong KR, Chung WK. Performance evaluation of a medical radiation shielding sheet with barium as an environment-friendly material. Journal of the Korean Physical Society. 2012;60:165-70. doi: 10.3938/jkps.60.165.
  51. Won-In K, Sirikulrat N, Dararutana P. Radiation shielding lead-free glass based on barium-bearing glass using Thailand quartz sands. Advanced Materials Research. 2011;214:207-11. doi: 10.4028/www.scientific.net/AMR.214.207.
  52. Uthoff H, Benenati MJ, Katzen BT, Peña C, Gandhi R, Staub D, Schernthaner M. Lightweight bilayer barium sulfate-bismuth oxide composite thyroid collars for superior radiation protection in fluoroscopy-guided interventions: a prospective randomized controlled trial. 2014;270(2):601-6. doi: 10.1148/radiol.13122834. PubMed PMID: 24126365.
  53. Sohail M, Ashraf MZ, Nadeem R, Bibi S, Rehman R, Amanullah, Iqbal MA. Techniques in the synthesis of organometallic compounds of tungsten. Rev Inorg Chem. 2020;40(1):1-45. doi: 10.1515/revic-2019-0013.
  54. Ayoub HS, Elbashar YH, Hassan HH, Khairy SA. Investigation of Tungsten Thermal Expansion at Elevated Temperatures Using Laser Shadowgraphy: A Review. Nonlinear Optics, Quantum Optics: Concepts in Modern Optics. 2019;51(1/2):1.
  55. Kobayashi S, Hosoda N, Takashima R. Tungsten alloys as radiation protection materials. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1997;390(3):426-30. doi: 10.1016/S0168-9002(97)00392-6.
  56. Neeman Z, Dromi SA, Sarin S, Wood BJ. CT fluoroscopy shielding: decreases in scattered radiation for the patient and operator. J Vasc Interv Radiol. 2006;17(12):1999-2004. doi: 10.1097/01.RVI.0000244847.63204.5f. PubMed PMID: 17185699. PubMed PMCID: PMC2408953.
  57. Dromi S, Wood BJ, Oberoi J, Neeman Z. Heavy metal pad shielding during fluoroscopic interventions. J Vasc Interv Radiol. 2006;17(7):1201-6. doi: 10.1097/01.RVI.0000228372.62738.36. PubMed PMID: 16868175. PubMed PMCID: PMC2386883.
  58. Parker MS, Chung JK, Fatouros PP, Hoots JA, Kelleher NM, Benedict SH. Reduction of radiation dose to the female breast: preliminary data with a custom designed tungsten-antimony composite breast shield. Journal of Applied Research. 2006;6(3):230.
  59. Parker MS, Kelleher NM, Hoots JA, Chung JK, Fatouros PP, Benedict SH. Absorbed radiation dose of the female breast during diagnostic multidetector chest CT and dose reduction with a tungsten-antimony composite breast shield: preliminary results. Clin Radiol. 2008;63(3):278-88. doi: 10.1016/j.crad.2007.07.029. PubMed PMID: 18275868.
  60. Saeedi-Moghadam M, Tayebi M, Chegeni N, Sina S, Kolayi T. Efficiency of non-lead and lead thyroid shields in radiation protection of CT examinations. Radiation Physics and Chemistry. 2021;180:109265. doi: 10.1016/j.radphyschem.2020.109265.
  61. Xiaozhou CA, Xiangxin X, Jiang T, Zhefu LI, Yuefeng DI, Yong LI, He YA. Mechanical properties of UHMWPE/Sm2O3 composite shielding material. Journal of Rare Earths. 2010;28:482-4. doi: 10.1016/S1002-0721(10)60269-4.
  62. İrim ŞG, Wis AA, Keskin MA, Baykara O, Ozkoc G, Avcı A, Doğru M, Karakoc M. Physical, mechanical and neutron shielding properties of h-BN/Gd2O3/HDPE ternary nanocomposites. Radiation Physics and Chemistry. 2018;144:434-43. doi: 10.1016/j.radphyschem.2017.10.007.
  63. Rogowska J, Olkowska E, Ratajczyk W, Wolska L. Gadolinium as a new emerging contaminant of aquatic environments. Environ Toxicol Chem. 2018;37(6):1523-34. doi: 10.1002/etc.4116. PubMed PMID: 29473658.
  64. Kaewjang S, Maghanemi U, Kothan S, Kim HJ, Limkitjaroenporn P, Kaewkhao J. New gadolinium based glasses for gamma-rays shielding materials. Nuclear Engineering and Design. 2014;280:21-6. doi: 10.1016/j.nucengdes.2014.08.030.
  65. More CV, Alsayed Z, Badawi MS, Thabet AA, Pawar PP. Polymeric composite materials for radiation shielding: a review. Environ Chem Lett. 2021;19(3):2057-90. doi: 10.1007/s10311-021-01189-9. PubMed: 33558806. PubMed PMCID: PMC7857349.
  66. Tsepelev AB, Kiseleva TY, Zholudev SI, Kovaleva SA, Grigoryeva TF, Ivanenko IP, et al. Electron irradiation resistance of the composite material structure based on ultra-high molecular polyethylene and boron carbide. Journal of Physics: Conference Series. 2019;1347(1):012028.
  67. Sayyed MI, Al-Ghamdi H, Almuqrin AH, Yasmin S, Elsafi M. A Study on the Gamma Radiation Protection Effectiveness of Nano/Micro-MgO-Reinforced Novel Silicon Rubber for Medical Applications. Polymers (Basel). 2022;14(14):2867. doi: 10.3390/polym14142867. PubMed PMID: 35890643. PubMed PMCID: PMC9323410.
  68. Abdel-Haseiba A, Ahmeda Z, Hassanb MM. Investigation of the gamma rays attenuation coefficients by experimental and MCNP simulation for polyamide 6/acrylonitrile-butadiene–styrene blends. J Nucl Radiat Phys. 2018;13(1):81-9.
  69. Mann KS, Rani A, Heer MS. Shielding behaviors of some polymer and plastic materials for gamma-rays. Radiation Physics and Chemistry. 2015;106:247-54. doi: 10.1016/j.radphyschem.2014.08.005.
  70. Elmahroug Y, Tellili B, Souga C. Determination of shielding parameters for different types of resins. Annals of Nuclear Energy. 2014;63:619-23. doi: 10.1016/j.anucene.2013.09.007.
  71. Gurler OR, Akar Tarim U. Determination of radiation shielding properties of some polymer and plastic materials against gamma-rays. Acta Physica Polonica A. 2016;130(1):236-8. doi: 10.12693/APhysPolA.130.236.
  72. Kilicoglu O, Kara U, Inanc I. The impact of polymer additive for N95 masks on gamma-ray attenuation properties. Mater Chem Phys. 2021;260:124093. doi: 10.1016/j.matchemphys.2020.124093. PubMed PMID: 33262549. PubMed PMCID: PMC7688283.
  73. Baxter L, Herrman K, Panthi R, Mishra K, Singh R, Thibeault S, et al. Thermoplastic micro-and nanocomposites for neutron shielding. In Micro and nanostructured composite materials for neutron shielding applications. Woodhead Publishing; 2020. p. 53-82.
  74. Biver M. Some kinetic aspects of the mobilization of antimony from natural sources [dissertation]. Available from: http://www.ub.uni-heidelberg.de/archiv/11972. 2011.
  75. Smith JD. The chemistry of arsenic, antimony and bismuth: pergamon texts in inorganic chemistry. Elsevier; 2016.
  76. Kim SH, Lee JM, Lee MW, Kim GH, Han JK, Choi BI. Diagnostic accuracy of 3.0-Tesla rectal magnetic resonance imaging in preoperative local staging of primary rectal cancer. Invest Radiol. 2008;43(8):587-93. doi: 10.1097/RLI.0b013e31817e9083. PubMed PMID: 18648259.
  77. Papadakis AE, Perisinakis K, Damilakis J. Angular on-line tube current modulation in multidetector CT examinations of children and adults: the influence of different scanning parameters on dose reduction. Med Phys. 2007;34(7):2864-74. doi: 10.1118/1.2747048. PubMed PMID: 17821994.
  78. Sundar S, Chakravarty J. Antimony toxicity. Int J Environ Res Public Health. 2010;7(12):4267-77. doi: 10.3390/ijerph7124267. PubMed PMID: 21318007. PubMed PMCID: PMC3037053.
  79. Kodre A, Gomilšek JP, Mihelič A, Arčon I. X-ray absorption in atomic Cd in the K-edge region. Radiation Physics and Chemistry. 2006;75(2):188-94. doi: 10.1016/j.radphyschem.2005.09.001.
  80. Tajiri M, Sunaoka M, Fukumura A, Endo M. A new radiation shielding block material for radiation therapy. Med Phys. 2004;31(11):3022-3. doi: 10.1118/1.1809767. PubMed PMID: 15587655.
  81. Mahurpawar M. Effects of heavy metals on human health. Int J Res Granthaalayah. 2015;530(516):1-7.
  82. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014;7(2):60-72. doi: 10.2478/intox-2014-0009. PubMed PMID: 26109881. PubMed PMCID: PMC4427717.
  83. La LB, Leatherday C, Leong YK, Watts HP, Zhang LC. Green lightweight lead-free Gd2O3/epoxy nanocomposites with outstanding X-ray attenuation performance. Composites Science and Technology. 2018;163:89-95. doi: 10.1016/j.compscitech.2018.05.018.
  84. La LB, Leatherday C, Qin P, Leong YK, Hayward KJ, Jiang B, Zhang LC. The interaction between encapsulated Gd2O3 particles and polymeric matrix: The mechanism of fracture and X-ray attenuation properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017;535:175-83. doi: 10.1016/j.colsurfa.2017.09.038.
  85. Glotzer SC, Solomon MJ, Kotov NA. Self-assembly: From nanoscale to microscale colloids. AIChE Journal. 2004;50(2):2978-85. doi: 10.1002/aic.10413.
  86. Kim SC. Analysis of shielding performance of radiation-shielding materials according to particle size and clustering effects. Applied Sciences. 2021;11(9):4010. doi: 10.3390/app11094010.
  87. Aral N, Duch MA, Nergis FB, Candan C. The effect of tungsten particle sizes on X-ray attenuation properties. Radiation Physics and Chemistry. 2021;187:109586. doi: 10.1016/j.radphyschem.2021.109586.
  88. Noor Azman NZ, Siddiqui SA, Hart R, Low IM. Effect of particle size, filler loadings and x-ray tube voltage on the transmitted x-ray transmission in tungsten oxide-epoxy composites. Appl Radiat Isot. 2013;71(1):62-7. doi: 10.1016/j.apradiso.2012.09.012. PubMed PMID: 23123305.
  89. Hussain HS, Jaffer HI. Dependence of gamma-ray absorption coefficient on the size of lead particle. Baghdad Science Journal. 2011;8(2):613-7. doi: 10.21123/bsj.2011.8.2.613-617.
  90. Künzel R, Okuno E. Effects of the particle sizes and concentrations on the X-ray absorption by CuO compounds. Appl Radiat Isot. 2012;70(4):781-4. doi: 10.1016/j.apradiso.2011.12.040. PubMed PMID: 22261089.
  91. Botelho MZ, Künzel R, Okuno E, Levenhagen RS, Basegio T, Bergmann CP. X-ray transmission through nanostructured and microstructured CuO materials. Appl Radiat Isot. 2011;69(2):527-30. doi: 10.1016/j.apradiso.2010.11.002. PubMed PMID: 21112215.
  92. Mortazavi SMJ, Faghihi R, Aghamiri MR, Aghaz A, Mosleh-Shirazi MA, Mehdizadeh S, Haghparast A. New Challenges in Moving Toward Nano-Sized Lead-Free Radiation Shields. Medical Physics. 2013;1(2):254.
  93. Nambiar S, Osei EK, Yeow JT. Polymer nanocomposite‐based shielding against diagnostic X‐rays. Journal of Applied Polymer Science. 2013;127(6):4939-46. doi: 10.1002/app.37980.
  94. Gholamzadeh L, Sharghi H, Aminian MK. Synthesis of barium-doped PVC/Bi2WO6 composites for X-ray radiation shielding. Nuclear Engineering and Technology. 2022;54(1):318-25. doi: 10.1016/j.net.2021.07.045.
  95. Kazemi F, Malekie S, Hosseini MA. A Monte Carlo Study on the Shielding Properties of a Novel Polyvinyl Alcohol (PVA)/WO3 Composite, Against Gamma Rays, Using the MCNPX Code. J Biomed Phys Eng. 2019;9(4):465-72. doi: 10.31661/jbpe.v0i0.1114. PubMed PMID: 31531300. PubMed PMCID: PMC6709351.
  96. Mehnati P, Malekzadeh R, Sooteh MY. Application of personal non-lead nano-composite shields for radiation protection in diagnostic radiology: a systematic review and meta-analysis. Nanomed J. 2020;7(3):170-82. doi: 10.22038/nmj.2020.07.0001.
  97. Kato M, Chida K, Munehisa M, Sato T, Inaba Y, Suzuki M, Zuguchi M. Non-Lead Protective Aprons for the Protection of Interventional Radiology Physicians from Radiation Exposure in Clinical Settings: An Initial Study. Diagnostics (Basel). 2021;11(9):1613. doi: 10.3390/diagnostics11091613. PubMed PMID: 34573955. PubMed PMCID: PMC8469807.
  98. Hubbert TE, Vucich JJ, Armstrong MR. Lightweight aprons for protection against scattered radiation during fluoroscopy. AJR Am J Roentgenol. 1993;161(5):1079-81. doi: 10.2214/ajr.161.5.8273614. PubMed PMID: 8273614.
  99. Zuguchi M, Chida K, Taura M, Inaba Y, Ebata A, Yamada S. Usefulness of non-lead aprons in radiation protection for physicians performing interventional procedures. Radiat Prot Dosimetry. 2008;131(4):531-4. doi: 10.1093/rpd/ncn244. PubMed PMID: 18801753.
  100. Uosif MA. Properties of a some (Ag-Cu-Sn) alloys for shielding against gamma rays. International Journal of Advanced Science and Technology. 2014;63:35-46. doi: 10.14257/ijast.2014.63.04.
  101. McCaffrey JP, Mainegra-Hing E, Shen H. Optimizing non-Pb radiation shielding materials using bilayers. Med Phys. 2009;36(12):5586-94. doi: 10.1118/1.3260839. PubMed PMID: 20095271.
  102. McCaffrey JP, Tessier F, Shen H. Radiation shielding materials and radiation scatter effects for interventional radiology (IR) physicians. Medical physics. 2012;39(7 Part 1):4537-46. doi: 10.1118/1.4730504.
  103. Scuderi GJ, Brusovanik GV, Campbell DR, Henry RP, Kwon B, Vaccaro AR. Evaluation of non-lead-based protective radiological material in spinal surgery. Spine J. 2006;6(5):577-82. doi: 10.1016/j.spinee.2005.09.010. PubMed PMID: 16934731.