Document Type : Mini Review

Authors

1 Professor Emeritus, Former Head of the Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, Warsaw, Poland

2 Head of the Department of Endocrinology and Radioisotope Therapy, Military Institute of Medicine, Warsaw, Poland

10.31661/jbpe.v0i0.2402-1722

Abstract

Exposure to ionizing radiation, especially during childhood, is a well-established risk factor for thyroid cancer. Following the 1986 Chernobyl nuclear power plant accident the total number of cases of thyroid cancer registered between 1991 and 2015 in males and females who were less than 18 years old exceeded 19,000 (in Belarus and Ukraine, and in the most contaminated oblasts of the Russian Federation). However, as indicated by the United Nations Scientific Committee on the Effects of Atomic Radiation the fraction of the incidence of thyroid cancer attributable to radiation exposure among the non-evacuated residents of the contaminated regions of Belarus, Ukraine and Russia is of the order of 0.25. Apparently, the increased registration of thyroid neoplasms in the parts of these countries is a classical ‘screening effect’, i.e., massive diagnostic examinations of the risk-aware populations performed with modern eqipment resulting in detection of many occult neoplasms (incidentalomas). Moreover, one type of thyroid cancer previously called ‘encapsulated follicular variant of papillary thyroid carcinoma’ is non-invasive and instead of ‘carcinoma’ should now be recognized as ‘noninvasive follicular thyroid neoplasm with papillary-like nuclear features.’ Other potential causes of overdiagnosing of thyroid tumors include increase of the spontaneous incidence rate of this disease with age, iodine deficiency among children from Belarus, Russia and Ukraine, and/or consumption by these children of drinking water containing high levels of nitrates that likely coincides with the carcinogenic effect of radiation on the thyroid gland.

Keywords

  1. Gembicki M, Stozharov AN, Arinchin AN, Moschik KV, Petrenko S, Khmara IM, Baverstock KF. Iodine deficiency in Belarusian children as a possible factor stimulating the irradiation of the thyroid gland during the Chernobyl catastrophe. Environ Health Perspect. 1997;105(Suppl 6):1487-90. doi: 10.1289/ehp.97105s61487. PubMed PMID: 9467069. PubMed PMCID: PMC1469945.
  2. Robbins J, Schneider AB. Thyroid cancer following exposure to radioactive iodine. Rev Endocr Metab Disord. 2000;1(3):197-203. doi: 10.1023/a:1010031115233. PubMed PMID: 11705004.
  3. Inskip PD. Thyroid cancer after radiotherapy for childhood cancer. Med Pediatr Oncol. 2001;36(5):568-73. doi: 10.1002/mpo.1132. PubMed PMID: 11340614.
  4. Mück K, Pröhl G, Likhtarev I, Kovgan L, Golikov V, Zeger J. Reconstruction of the inhalation dose in the 30-km zone after the Chernobyl accident. Health Phys. 2002;82(2):157-72. doi: 10.1097/00004032-200202000-00003. PubMed PMID: 11797891.
  5. Pröhl G, Mück K, Likhtarev I, Kovgan L, Golikov V. Reconstruction of the ingestion doses received by the population evacuated from the settlements in the 30-km zone around the Chernobyl reactor. Health Phys. 2002;82(2):173-81. doi: 10.1097/00004032-200202000-00004. PubMed PMID: 11797892.
  6. Ivanov VK, Kashcheev VV, Chekin SY, Maksioutov MA, Tumanov KA, Vlasov OK, et al. Radiation-epidemiological studies of thyroid cancer incidence in Russia after the Chernobyl accident (estimation of radiation risks, 1991-2008 follow-up period). Radiat Prot Dosimetry. 2012;151(3):489-99. doi: 10.1093/rpd/ncs019. PubMed PMID: 22416255.
  7. Evaluation of Data on Thyroid Cancer in Regions Affected by the Chernobyl Accident, A white paper to guide the Scientific Committee’s future programme of work. New York: United Nations; 2018.
  8. Guth S, Theune U, Aberle J, Galach A, Bamberger CM. Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. Eur J Clin Invest. 2009;39(8):699-706. doi: 10.1111/j.1365-2362.2009.02162.x. PubMed PMID: 19601965.
  9. Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973-2002. 2006;295(18):2164-7. doi: 10.1001/jama.295.18.2164. PubMed PMID: 16684987.
  10. Davies L, Welch HG. Current thyroid cancer trends in the United States. JAMA Otolaryngol Head Neck Surg. 2014;140(4):317-22. doi: 10.1001/jamaoto.2014.1. PubMed PMID: 24557566.
  11. Hoang JK, Choudhury KR, Eastwood JD, Esclamado RM, Lyman GH, Shattuck TM, Nguyen XV. An exponential growth in incidence of thyroid cancer: trends and impact of CT imaging. AJNR Am J Neuroradiol. 2014;35(4):778-83. doi: 10.3174/ajnr.A3743. PubMed PMID: 24113469. PubMed PMCID: PMC7965799.
  12. Kitahara CM, Sosa JA. The changing incidence of thyroid cancer. Nat Rev Endocrinol. 2016;12(11):646-53. doi: 10.1038/nrendo.2016.110. PubMed PMID: 27418023. PubMed PMCID: PMC10311569.
  13. Dean DS, Gharib H. Epidemiology of thyroid nodules. Best Pract Res Clin Endocrinol Metab. 2008;22(6):901-11. doi: 10.1016/j.beem.2008.09.019. PubMed PMID: 19041821.
  14. Filetti S, Durante C, Hartl D, Leboulleux S, Locati LD, Newbold K, et al. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2019;30(12):1856-83. doi: 10.1093/annonc/mdz400. PubMed PMID: 31549998.
  15. Kaliszewski K, Diakowska D, Wojtczak B, Rudnicki J. Cancer screening activity results in overdiagnosis and overtreatment of papillary thyroid cancer: A 10-year experience at a single institution. PLoS One. 2020;15(7):e0236257. doi: 10.1371/journal.pone.0236257. PubMed PMID: 32692768. PubMed PMCID: PMC7373277.
  16. Kazakov VS, Demidchik EP, Astakhova LN. Thyroid cancer after Chernobyl. 1992;359(6390):21. doi: 10.1038/359021a0. PubMed PMID: 1522879.
  17. Ron E, Lubin JH, Shore RE, Mabuchi K, Modan B, Pottern LM, et al. Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res. 1995;141(3):259-77. PubMed PMID: 7871153.
  18. Shakhtarin VV, Tsyb AF, Stepanenko VF, Orlov MY, Kopecky KJ, Davis S. Iodine deficiency, radiation dose, and the risk of thyroid cancer among children and adolescents in the Bryansk region of Russia following the Chernobyl power station accident. Int J Epidemiol. 2003;32(4):584-91. doi: 10.1093/ije/dyg205. PubMed PMID: 12913034.
  19. Carling T, Udelsman R. Thyroid cancer. Annu Rev Med. 2014;65:125-37. doi: 10.1146/annurev-med-061512-105739. PubMed PMID: 24274180.
  20. Zimmermann MB, Galetti V. Iodine intake as a risk factor for thyroid cancer: a comprehensive review of animal and human studies. Thyroid Res. 2015;8:8. doi: 10.1186/s13044-015-0020-8. PubMed PMID: 26146517. PubMed PMCID: PMC4490680.
  21. Veiga LH, Holmberg E, Anderson H, Pottern L, Sadetzki S, Adams MJ, et al. Thyroid Cancer after Childhood Exposure to External Radiation: An Updated Pooled Analysis of 12 Studies. Radiat Res. 2016;185(5):473-84. doi: 10.1667/RR14213.1. PubMed PMID: 27128740. PubMed PMCID: PMC4893786.
  22. Aschebrook-Kilfoy B, Schechter RB, Shih YC, Kaplan EL, Chiu BC, Angelos P, Grogan RH. The clinical and economic burden of a sustained increase in thyroid cancer incidence. Cancer Epidemiol Biomarkers Prev. 2013;22(7):1252-9. doi: 10.1158/1055-9965.EPI-13-0242. PubMed PMID: 23677575.
  23. Cleere EF, Davey MG, O’Neill S, Corbett M, O’Donnell JP, Hacking S, et al. Radiomic Detection of Malignancy within Thyroid Nodules Using Ultrasonography-A Systematic Review and Meta-Analysis. Diagnostics (Basel). 2022;12(4):794. doi: 10.3390/diagnostics12040794. PubMed PMID: 35453841. PubMed PMCID: PMC9027085.
  24. Nix P, Nicolaides A, Coatesworth AP. Thyroid cancer review 2: management of differentiated thyroid cancers. Int J Clin Pract. 2005;59(12):1459-63. doi: 10.1111/j.1368-5031.2005.00672.x. PubMed PMID: 16351679.
  25. Nix PA, Nicolaides A, Coatesworth AP. Thyroid cancer review 3: management of medullary and undifferentiated thyroid cancer. Int J Clin Pract. 2006;60(1):80-4. doi: 10.1111/j.1742-1241.2005.00673.x. PubMed PMID: 16409432.
  26. Albores-Saavedra J, Henson DE, Glazer E, Schwartz AM. Changing patterns in the incidence and survival of thyroid cancer with follicular phenotype--papillary, follicular, and anaplastic: a morphological and epidemiological study. Endocr Pathol. 2007;18(1):1-7. doi: 10.1007/s12022-007-0002-z. PubMed PMID: 17652794.
  27. Lin JD. Increased incidence of papillary thyroid microcarcinoma with decreased tumor size of thyroid cancer. Med Oncol. 2010;27(2):510-8. doi: 10.1007/s12032-009-9242-8. PubMed PMID: 19507072.
  28. Aschebrook-Kilfoy B, Ward MH, Sabra MM, Devesa SS. Thyroid cancer incidence patterns in the United States by histologic type, 1992-2006. Thyroid. 2011;21(2):125-34. doi: 10.1089/thy.2010.0021. PubMed PMID: 21186939. PubMed PMCID: PMC3025182.
  29. Tuttle RM, Vaisman F, Tronko MD. Clinical presentation and clinical outcomes in Chernobyl-related paediatric thyroid cancers: what do we know now? What can we expect in the future? Clin Oncol (R Coll Radiol). 2011;23(4):268-75. doi: 10.1016/j.clon.2011.01.178. PubMed PMID: 21324656.
  30. Nikiforov YE, Seethala RR, Tallini G, Baloch ZW, Basolo F, Thompson LD, et al. Nomenclature Revision for Encapsulated Follicular Variant of Papillary Thyroid Carcinoma: A Paradigm Shift to Reduce Overtreatment of Indolent Tumors. JAMA Oncol. 2016;2(8):1023-9. doi: 10.1001/jamaoncol.2016.0386. PubMed PMID: 27078145. PubMed PMCID: PMC5539411.
  31. Ferris RL, Nikiforov Y, Terris D, Seethala RR, Ridge JA, Angelos P, et al. AHNS Series: Do you know your guidelines? AHNS Endocrine Section Consensus Statement: State-of-the-art thyroid surgical recommendations in the era of noninvasive follicular thyroid neoplasm with papillary-like nuclear features. Head Neck. 2018;40(9):1881-8. doi: 10.1002/hed.25141. PubMed PMID: 29947030. PubMed PMCID: PMC6175359.
  32. Nikiforov YE. Radiation-induced thyroid cancer: what we have learned from chernobyl. Endocr Pathol. 2006;17(4):307-17. doi: 10.1007/s12022-006-0001-5. PubMed PMID: 17525478.
  33. Brenner AV, Tronko MD, Hatch M, Bogdanova TI, Oliynik VA, Lubin JH, et al. I-131 dose response for incident thyroid cancers in Ukraine related to the Chornobyl accident. Environ Health Perspect. 2011;119(7):933-9. doi: 10.1289/ehp.1002674. PubMed PMID: 21406336. PubMed PMCID: PMC3222994.
  34. Zablotska LB, Ron E, Rozhko AV, Hatch M, Polyanskaya ON, Brenner AV, et al. Thyroid cancer risk in Belarus among children and adolescents exposed to radioiodine after the Chornobyl accident. Br J Cancer. 2011;104(1):181-7. doi: 10.1038/sj.bjc.6605967. PubMed PMID: 21102590. PubMed PMCID: PMC3039791.
  35. Parshkov EM, Chebotareva IV, Sokolov VA, Dallas CE. Additional thyroid dose factor from transportation sources in Russia after the Chernobyl disaster. Environ Health Perspect. 1997;105(Suppl 6):1491-6. doi: 10.1289/ehp.97105s61491. PubMed PMID: 9467070. PubMed PMCID: PMC1469952.
  36. Suchy B, Waldmann V, Klugbauer S, Rabes HM. Absence of RAS and p53 mutations in thyroid carcinomas of children after Chernobyl in contrast to adult thyroid tumours. Br J Cancer. 1998;77(6):952-5. doi: 10.1038/bjc.1998.157. PubMed PMID: 9528840. PubMed PMCID: PMC2150103.
  37. Abend M, Pfeiffer RM, Ruf C, Hatch M, Bogdanova TI, Tronko MD, et al. Iodine-131 dose dependent gene expression in thyroid cancers and corresponding normal tissues following the Chernobyl accident. PLoS One. 2012;7(7):e39103. doi: 10.1371/journal.pone.0039103. PubMed PMID: 22848350. PubMed PMCID: PMC3405097.
  38. Handkiewicz-Junak D, Swierniak M, Rusinek D, Oczko-Wojciechowska M, Dom G, Maenhaut C, et al. Gene signature of the post-Chernobyl papillary thyroid cancer. Eur J Nucl Med Mol Imaging. 2016;43(7):1267-77. doi: 10.1007/s00259-015-3303-3. PubMed PMID: 26810418. PubMed PMCID: PMC4869750.
  39. Efanov AA, Brenner AV, Bogdanova TI, Kelly LM, Liu P, Little MP, et al. Investigation of the Relationship Between Radiation Dose and Gene Mutations and Fusions in Post-Chernobyl Thyroid Cancer. J Natl Cancer Inst. 2018;110(4):371-8. doi: 10.1093/jnci/djx209. PubMed PMID: 29165687. PubMed PMCID: PMC6059206.
  40. Jargin S. Thyroid Cancer After Chernobyl: Re-Evaluation Needed. Turk Patoloji Derg. 2021;37(1):1-6. doi: 10.5146/tjpath.2020.01489. PubMed PMID: 32525210. PubMed PMCID: PMC10508932.
  41. Sources and Effects of Ionizing Radiation. Vol. II: Effects: Scientific Annexes C, D, and E. UNSCEAR 2008 Report; New York: United Nations; 2011.
  42. Jaworowski Z. Observations on the Chernobyl Disaster and LNT. Dose Response. 2010;8(2):148-71. doi: 10.2203/dose-response.09-029.Jaworowski. PubMed PMID: 20585443. PubMed PMCID: PMC2889503.
  43. Zupunski L, Ostroumova E, Drozdovitch V, Veyalkin I, Ivanov V, Yamashita S, et al. Thyroid Cancer after Exposure to Radioiodine in Childhood and Adolescence: 131I-Related Risk and the Role of Selected Host and Environmental Factors. Cancers (Basel). 2019;11(10):1481. doi: 10.3390/cancers11101481. PubMed PubMed PMID: 31581656. PubMed PMCID: PMC6826556.
  44. Ivanov VK, Tsyb AF, Ivanov S, Pokrovsky V. Medical Radiological Consequences of the Chernobyl Catastrophe in Russia. Petersburg, Nauka: IAEA; 2004.
  45. Shibamoto Y, Nakamura H. Overview of Biological, Epidemiological, and Clinical Evidence of Radiation Hormesis. Int J Mol Sci. 2018;19(8):2387. doi: 10.3390/ijms19082387. PubMed PMID: 30104556. PubMed PMCID: PMC6121451.
  46. Kozumbo WJ, Calabrese EJ. Two decades (1998-2018) of research Progress on Hormesis: advancing biological understanding and enabling novel applications. J Cell Commun Signal. 2019;13(3):273-5. doi: 10.1007/s12079-019-00517-7. PubMed PMID: 30997652. PubMed PMCID: PMC6732134.
  47. Hubert JP Jr, Kiernan PD, Beahrs OH, McConahey WM, Woolner LB. Occult papillary carcinoma of the thyroid. Arch Surg. 1980;115(4):394-8. doi: 10.1001/archsurg.1980.01380040028004. PubMed PMID: 7362444.
  48. McLeod DS, Sawka AM, Cooper DS. Controversies in primary treatment of low-risk papillary thyroid cancer. 2013;381(9871):1046-57. doi: 10.1016/S0140-6736(12)62205-3. PubMed PMID: 23668555.
  49. Pinchera A. Thyroid incidentalomas. Horm Res. 2007;68(Suppl 5):199-201. doi: 10.1159/000110625. PubMed PMID: 18174746.
  50. Fukunaga FH, Yatani R. Geographic pathology of occult thyroid carcinomas. 1975;36(3):1095-9. doi: 10.1002/1097-0142(197509)36:3<1095::aid-cncr2820360338>3.0.co;2-9. PubMed PMID: 1182663.
  51. Harach HR, Franssila KO, Wasenius VM. Occult papillary carcinoma of the thyroid. A “normal” finding in Finland. A systematic autopsy study. 1985;56(3):531-8. doi: 10.1002/1097-0142(19850801)56:3<531::aid-cncr2820560321>3.0.co;2-3. PubMed PMID: 2408737.
  52. Martinez-Tello FJ, Martinez-Cabruja R, Fernandez-Martin J, Lasso-Oria C, Ballestin-Carcavilla C. Occult carcinoma of the thyroid. A systematic autopsy study from Spain of two series performed with two different methods. Cancer. 1993;71(12):4022-9. doi: 10.1002/1097-0142(19930615)71:12<4022::aid-cncr2820711236>3.0.co;2-o. PubMed PMID: 8508367.
  53. Moosa M, Mazzaferri EL. Occult thyroid carcinoma. Cancer J. 1997;10:180-8.
  54. Furmanchuk AW, Roussak N, Ruchti C. Occult thyroid carcinomas in the region of Minsk, Belarus. An autopsy study of 215 patients. 1993;23(4):319-25. doi: 10.1111/j.1365-2559.1993.tb01214.x. PubMed PMID: 8300067.
  55. Parshkov EM, Sokolov VA, Tsyb AF, Proshin AD, Barnes JG. Radiation-induced thyroid cancer: what we know and what we really understand. International Journal of Low Radiation. 2004;1(3):267-78. doi : 10.1504/IJLR.2004.005425.
  56. Mehta MP, Goetowski PG, Kinsella TJ. Radiation induced thyroid neoplasms 1920 to 1987: a vanishing problem? Int J Radiat Oncol Biol Phys. 1989;16(6):1471-5. doi: 10.1016/0360-3016(89)90951-6. PubMed PMID: 2656599.
  57. Sarne D, Schneider AB. External radiation and thyroid neoplasia. Endocrinol Metab Clin North Am. 1996;25(1):181-95. doi: 10.1016/s0889-8529(05)70318-2. PubMed PMID: 8907686.
  58. Sources and Effects of Ionizing Radiation. VOL I. Annex J: Exposures and effects of the Chernobyl accident. UNSCEAR 2000 Report to the General Assembly; New York: United Nations; 2000. p. 451-566.
  59. World Health Organization. World Cancer Report. Chapter 5.15. WHO; 2014.
  60. Cardis E, Kesminiene A, Ivanov V, Malakhova I, Shibata Y, Khrouch V, et al. Risk of thyroid cancer after exposure to 131I in childhood. J Natl Cancer Inst. 2005;97(10):724-32. doi: 10.1093/jnci/dji129. PubMed PMID: 15900042.
  61. Drozd V, Saenko V, Branovan DI, Brown K, Yamashita S, Reiners C. A Search for Causes of Rising Incidence of Differentiated Thyroid Cancer in Children and Adolescents after Chernobyl and Fukushima: Comparison of the Clinical Features and Their Relevance for Treatment and Prognosis. Int J Environ Res Public Health. 2021;18(7):3444. doi: 10.3390/ijerph18073444. PubMed PMID: 33810323. PubMed PMCID: PMC8037740.
  62. Drozd VM, Saenko VA, Brenner AV, Drozdovitch V, Pashkevich VI, Kudelsky AV, et al. Major Factors Affecting Incidence of Childhood Thyroid Cancer in Belarus after the Chernobyl Accident: Do Nitrates in Drinking Water Play a Role? PLoS One. 2015;10(9):e0137226. doi: 10.1371/journal.pone.0137226. PubMed PMID: 26397978. PubMed PMCID: PMC4580601.