Document Type : Original Research

Authors

1 Department of Prosthetics & Orthotics Engineering, College of Engineering and Technology, Al-Mustaqbal University, Babylon - Hilla, Iraq

2 Department of Prosthetics & Orthotics Engineering, College of Engineering, Al-Nahrain University, Baghdad, Iraq

10.31661/jbpe.v0i0.2401-1712

Abstract

Background: Nanocoating of biomedical materials has emerged as a crucial emerging discipline, to enhance tribological behaviors, durability, and performance of materials.
Objective: This study aimed to investigate the tribological characteristics of substrates coated with Hydroxyapatite (HAp) and Silica glass (SiO2).
Material and Methods: In this experimental study, the substrates were Ti-6Al-4V, a widely used titanium alloy for osseointegration implants. The substrates were coated with 90% HAp and 10% SiO2 via the plasma cold spray technique. The friction examination was analyzed at room temperature and under the Simulated Body Fluid (SBF) condition using the pin-on-disc technique.
Results: The microstructural analysis confirmed the coated technique in producing a nano-sized layer. While the pin-on-disc test indicates that nanocoated Ti-6Al-4V specimens have a significantly higher average coefficient of friction than uncoated specimens, surface roughness is the primary contributor. 
Conclusion: Through microstructure properties and tribological behavior, the coated alloy may provide a benefit in circumstances, in which lubrication availability is restricted or undesirable, such as when the implant comes into contact with the bone interface.

Highlights

Muntadher Saleh Mahdi (Google Scholar)

Keywords

  1. Li Y, Felländer-Tsai L. The bone anchored prostheses for amputees - Historical development, cur-rent status, and future aspects. 2021;273:120836. doi: 10.1016/j.biomaterials.2021.120836. PubMed PMID: 33894405.
  2. Bertos GA, Papadopoulos EG. Lower-Limb Prosthetics. In Handbook of Biomechatronics. UK/USA: Elsevier Academic Press; 2018.
  3. Rasheed DM, Hamdi DA. Enhancement the Osseo Integration Properties of Polymer for Human Body Implants. Al-Nahrain Journal for Engineering Sciences. 2020;23(4):331-7.
  4. Reif TJ, Jacobs D, Fragomen AT, Rozbruch SR. Osseointegration amputation reconstruction. Cur-rent Physical Medicine and Rehabilitation Reports. 2022;10(2):61-70. doi: 10.1007/s40141-022-00344-9.
  5. Fellah M, Labaïz M, Assala O, Dekhil L, Taleb A, Rezag H, Iost A. Tribological behavior of Ti-6Al-4V and Ti-6Al-7Nb alloys for total hip prosthesis. Advances in Tribology. doi: 10.1155/2014/451387.
  6. Katić J, Krivačić S, Petrović Ž, Mikić D, Marciuš M. Titanium Implant Alloy Modified by Electro-chemically Deposited Functional Bioactive Calcium Phosphate Coatings. 2023;13(3):640. doi: 10.3390/coatings13030640.
  7. Hamdi DA, Jiang ZT, No K, Rahman MM, Lee PC, Truc LN, et al. Biocompatibility study of multi-layered hydroxyapatite coatings synthesized on Ti-6Al-4V alloys by RF magnetron sputtering for prosthetic-orthopaedic implant applications. Applied Surface Science. 2019;463:292-9. doi: 10.1016/j.apsusc.2018.08.157.
  8. Catauro M, Barrino F, Bononi M, Colombini E, Giovanardi R, Veronesi P, Tranquillo E. Coating of titanium substrates with ZrO2 and ZrO2-SiO2 composites by sol-gel synthesis for biomedical appli-cations: Structural characterization, mechanical and corrosive behavior. 2019;9(3):200. doi: 10.3390/coatings9030200.
  9. Ravarian R, Moztarzadeh F, Hashjin MS, Rabiee SM, Khoshakhlagh P, Tahriri M. Synthesis, char-acterization and bioactivity investigation of bioglass/hydroxyapatite composite. Ceramics Interna-tional. 2010;36(1):291-7. doi: 10.1016/j.ceramint.2009.09.016.
  10. Ismail MR, Ghani IZ. Estimating Transfer Function of Below-Knee Prosthesis at Two Phases of Gait Cycle. Al-Nahrain Journal for Engineering Sciences (NJES). 2017;20(3):770-7.
  11. Hussein MA, Mohammed AS, Al-Aqeeli N. Wear characteristics of metallic biomaterials: a review. 2015;8(5):2749-68. doi: 10.3390/ma8052749.
  12. Menezes PL, Kishore, Kailas SV, Lovell MR. Role of surface texture, roughness, and hardness on friction during unidirectional sliding. Tribology letters. 2011;41:1-5. doi: 10.1007/s11249-010-9676-3.
  13. Swaminathan V, Gilbert JL. Fretting corrosion of CoCrMo and Ti6Al4V interfaces. 2012;33(22):5487-503. doi: 10.1016/j.biomaterials.2012.04.015. PubMed PMID: 22575833.
  14. Deng F, Liu L, Li Z, Liu J. 3D printed Ti6Al4V bone scaffolds with different pore structure effects on bone ingrowth. J Biol Eng. 2021;15(1):4. doi: 10.1186/s13036-021-00255-8. PubMed PMID: 33478505. PubMed PMCID: PMC7818551.
  15. Kiepura RT, Sanders BR. ASM handbook: Metallography and microstructures. ASM International; 1985.
  16. Guerzoni S, Deplaine H, El Haskouri J, Amoros P, Pradas MM, Edlund U, Ferrer GG. Combination of silica nanoparticles with hydroxyapatite reinforces poly (L-lactide acid) scaffolds without loss of bioactivity. Journal of Bioactive and Compatible Polymers. 2014;29(1):15-31. doi: 10.1177/0883911513513093.
  17. Razali RA, Rahim NA, Zainol I, Sharif AM. Preparation of dental composite using hydroxyapatite from natural sources and silica. Journal of Physics: Conf Series. 2018;1097(1):012050. doi: 10.1088/1742-6596/1097/1/012050.
  18. Zdero R, Guenther LE, Gascoyne TC. Pin-on-disk wear testing of biomaterials used for total joint replacements. Experimental Methods in Orthopaedic Biomechanics. 2017:299-311. doi: 10.1016/B978-0-12-803802-4.00019-6.
  19. Aldabagh DJ, Alzubadi TL, Alhuwaizi AF. Tribology of Coated 316L SS by Various Nanoparticles. Int J Biomater. 2023;2023:6676473. doi: 10.1155/2023/6676473. PubMed PMID: 37649637. PubMed PMCID: PMC10465258.
  20. Klepper CC, Williams JM, Truhan JJ, Qu J, Riester L, Hazelton RC, et al. Tribo-mechanical proper-ties of thin boron coatings deposited on polished cobalt alloy surfaces for orthopedic applications. Thin Solid Films. 2008;516(10):3070-80. doi: 10.1016/j.tsf.2007.10.111. PubMed PMID: 19340285. PubMed PMCID: PMC2435378.
  21. Hamdi DA. Deposition Hydroxyapatite/Titania Composite on Ti-6Al-7Nb Alloy for Human Body Implants. Al-Nahrain Journal for Engineering Sciences. 2018;21(4):467-72. doi: 10.29194/NJES.21040467.
  22. Subhash G, Zhang W. Investigation of the overall friction coefficient in single-pass scratch test. 2002;252(1-2):123-34. doi: 10.1016/S0043-1648(01)00852-3.
  23. Soundrapandian C, Bharati S, Basu D, Datta S. Studies on novel bioactive glasses and bioactive glass–nano-HAp composites suitable for coating on metallic implants. Ceramics International. 2011;37(3):759-69. doi: 10.1016/j.ceramint.2010.10.025.
  24. Costa-Rodrigues J, Fernandes A, Lopes MA, Fernandes MH. Hydroxyapatite surface roughness: complex modulation of the osteoclastogenesis of human precursor cells. Acta Biomater. 2012;8(3):1137-45. doi: 10.1016/j.actbio.2011.11.032. PubMed PMID: 22178652.
  25. Zhang Y, Ahn PB, Fitzpatrick DC, Heiner AD, Poggie RA, Brown TD. Interfacial frictional behav-ior: cancellous bone, cortical bone, and a novel porous tantalum biomaterial. Journal of Musculo-skeletal Research. 1999;3(4):245-51. doi: 10.1142/S0218957799000269.
  26. Cheng L, Wu H, Li J, Zhao H, Wang L. Polydopamine modified ultrathin hydroxyapatite nanosheets for anti-corrosion reinforcement in polymeric coatings. Corrosion Science. 2021;178:109064. doi: 10.1016/j.corsci.2020.109064.