Document Type : Original Research

Authors

1 Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

2 Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran

3 Medical Radiation Research Center, Central Tehran Branch, Islamic Azad University, Tehran, Iran

4 Department of Radiology, Faculty of Allied Medicine, Mazandaran University of Medical Sciences, Sari, Iran

5 Department of Radiotherapy Physics, General Al-Najaf Al-Ashraf Hospital, Najaf, Iraq

10.31661/jbpe.v0i0.2403-1734

Abstract

Background: Helical Tomotherapy (HT) enables daily verification of patient positioning using Megavoltage Computed Tomography (MVCT) during each treatment session.
Objective: The present study aimed to investigate the effects of Automatic Registration (AR) compared to a combination of Automatic and Manual Registration (AR+MR) on setup errors. Additionally, the study aimed to determine the corresponding Margins of the Planning Target Volume (MPTV).
Material and Methods: In this experimental study, a total of 1513 daily MVCT scans were analyzed from September 2020 to January 2024, which were obtained from 71 patients diagnosed with Head and Neck (HN), cervical, and gastrointestinal cancer. The scans were registered with the planning CT to determine the setup errors of the patients. The analysis compares the setup errors between the AR and the AR+MR techniques in translational (X, Y, and Z axes) and rotational directions (RX, RY, and RZ). Additionally, the study calculated the MPTV.
Results: In the AR and AR+MR techniques, the translational setup errors were significantly different in the Z-axis for HN patients. For cervical cancer patients, AR and AR+MR exhibited significantly different translational errors across all axes. Furthermore, they also had notable differences in the Y and Z-axis translational errors for Gastro-Intestinal (GI) patients. Regarding the rotational setup errors, a substantial difference was observed in the Z-axis translational error for cervical cancer patients, and in the Y and Z-axes for GI patients. 
Conclusion: Human assessment after automatic registration helps ensure that the registration is clinically appropriate, especially in circumstances involving deformable patient anatomy.

Keywords

  1. Billiet C, Vingerhoed W, Van Laere S, Joye I, Mercier C, Dirix P, et al. Precision of image-guided spinal stereotactic ablative radiotherapy and impact of positioning variables. Phys Imaging Radiat Oncol. 2022;22:73-6. doi: 10.1016/j.phro.2022.04.006. PubMed PMID: 35686020. PubMed PMCID: PMC9172170.
  2. Yagihashi T, Inoue T, Shiba S, Yamano A, Yamanaka M, Sato N, et al. Comparing Efficacy Between Robust and PTV Margin-based Optimizations for Interfractional Anatomical Variations in Prostate Tomotherapy. In Vivo. 2024;38(1):409-17. doi: 10.21873/invivo.13453. PubMed PMID: 38148099. PubMed PMCID: PMC10756445.
  3. Han MC, Hong CS, Chang KH, Kim J, Han SC, Kim DW, et al. TomoMQA: Automated analysis program for MVCT quality assurance of helical tomotherapy. J Appl Clin Med Phys. 2020;21(6):151-7. doi: 10.1002/acm2.12875. PubMed PMID: 32268003. PubMed PMCID: PMC7324692.
  4. Costin IC, Marcu LG. Factors impacting on patient setup analysis and error management during breast cancer radiotherapy. Crit Rev Oncol Hematol. 2022;178:103-25. doi: 10.1016/j.critrevonc.2022.103798. PubMed PMID: 36031175
  5. Dekker J, Rozema T, Böing-Messing F, Garcia M, Washington D, De Kruijf W. Whole-brain radiation therapy without a thermoplastic mask. Phys Imaging Radiat Oncol. 2019;11:27-9. doi: 10.1016/j.phro.2019.07.004. PubMed PMID: 33458273. PubMed PMCID: PMC7807553.
  6. Yoram F, Dharsee N, Mkoka DA, Maunda K, Kisukari JD. Radiation therapists’ perceptions of thermoplastic mask use for head and neck cancer patients undergoing radiotherapy at Ocean Road Cancer Institute in Tanzania: A qualitative study. PLoS One. 2023;18(2):e0282160. doi: 10.1371/journal.pone.0282160. PubMed PMID: 36821555. PubMed PMCID: PMC9949626.
  7. Thondykandy BA, Swamidas JV, Agarwal J, Gupta T, Laskar SG, Mahantshetty U, et al. Setup error analysis in helical tomotherapy based image-guided radiation therapy treatments. J Med Phys. 2015;40(4):233-9. doi: 10.4103/0971-6203.170796. PubMed PMID: 26865760. PubMed PMCID: PMC4728895.
  8. Isobe A, Usui K, Hara N, Sasai K. The effects of rotational setup errors in total body irradiation using helical tomotherapy. J Appl Clin Med Phys. 2021;22(7):93-102. doi: 10.1002/acm2.13271. PubMed PMID: 34028944. PubMed PMCID: PMC8292714.
  9. Webster A, Appelt AL, Eminowicz G. Image-Guided Radiotherapy for Pelvic Cancers: A Review of Current Evidence and Clinical Utilisation. Clin Oncol (R Coll Radiol). 2020;32(12):805-16. doi: 10.1016/j.clon.2020.09.010. PubMed PMID: 33071029.
  10. Kupelian P, Langen K. Helical tomotherapy: image-guided and adaptive radiotherapy. Front Radiat Ther Oncol. 2011;43:165-180. doi: 10.1159/000322420. PubMed PMID: 21625153.
  11. Jassim H, Nedaei HA, Geraily G, Banaee N, Kazemian A. The geometric and dosimetric accuracy of kilovoltage cone beam computed tomography images for adaptive treatment: a systematic review. BJR Open. 2023;5(1):20220062. doi: 10.1259/bjro.20220062. PubMed PMID: 37389008. PubMed PMCID: PMC10301728.
  12. Lowe M, Gosling A, Nicholas O, Underwood T, Miles E, Chang YC, et al. Comparing Proton to Photon Radiotherapy Plans: UK Consensus Guidance for Reporting Under Uncertainty for Clinical Trials. Clin Oncol (R Coll Radiol). 2020;32(7):459-66. doi: 10.1016/j.clon.2020.03.014. PubMed PMID: 32307206.
  13. Grégoire V, Guckenberger M, Haustermans K, Lagendijk JJW, Ménard C, Pötter R, et al. Image guidance in radiation therapy for better cure of cancer. Mol Oncol. 2020;14(7):1470-91. doi: 10.1002/1878-0261.12751. PubMed PMID: 32536001. PubMed PMCID: PMC7332209.
  14. Rørtveit ØL, Hysing LB, Stordal AS, Pilskog S. Reducing systematic errors due to deformation of organs at risk in radiotherapy. Med Phys. 2021;48(11):6578-87. doi: 10.1002/mp.15262. PubMed PMID: 34606630.
  15. Sasaki F, Yamashita Y, Nakano S, Ishikawa M. Verification of patient-setup accuracy using a surface imaging system with steep measurement angle. J Appl Clin Med Phys. 2023;24(4):e13872. doi: 10.1002/acm2.13872. PubMed PMID: 36537149. PubMed PMCID: PMC10113693.
  16. Unkelbach J, Bortfeld T, Cardenas CE, Gregoire V, Hager W, Heijmen B, et al. The role of computational methods for automating and improving clinical target volume definition. Radiother Oncol. 2020;153:15-25. doi: 10.1016/j.radonc.2020.10.002. PubMed PMID: 33039428.
  17. Kensen CM, Janssen TM, Betgen A, Wiersema L, Peters FP, Remeijer P, et al. Effect of intrafraction adaptation on PTV margins for MRI guided online adaptive radiotherapy for rectal cancer. Radiat Oncol. 2022;17(1):110. doi: 10.1186/s13014-022-02079-2. PubMed PMID: 35729587. PubMed PMCID: PMC9215022.
  18. Jhaveri J, Chowdhary M, Zhang X, Press RH, Switchenko JM, Ferris MJ, et al. Does size matter? Investigating the optimal planning target volume margin for postoperative stereotactic radiosurgery to resected brain metastases. J Neurosurg. 2018;130(3):797-803. doi: 10.3171/2017.9.JNS171735. PubMed PMID: 29676690. PubMed PMCID: PMC6195865.
  19. Zhao J, Zhang M, Zhai F, Wang H, Li X. Setup errors in radiation therapy for thoracic tumor patients of different body mass index. J Appl Clin Med Phys. 2018;19(3):27-31. doi: 10.1002/acm2.12270. PubMed PMID: 29493070. PubMed PMCID: PMC5978940.
  20. Zhenghuan L, Manya W, Fantu K, Jie D, Yuan C, Qinghe P, et al. Investigation on cone-beam computed tomography-based liver cancer radiotherapy clinical target volume planning target volume margin and analysis of dosimetric differences. J Rad Res and App Sci. 2023;16:100537. doi: 10.1016/j.jrras.2023.100537.
  21. Stroom JC, Heijmen BJ. Geometrical uncertainties, radiotherapy planning margins, and the ICRU-62 report. Radiother Oncol. 2002;64(1):75-83. doi: 10.1016/s0167-8140(02)00140-8. PubMed PMID: 12208578.
  22. Van Herk M. Errors and margins in radiotherapy. Semin Radiat Oncol. 2004;14(1):52-64. doi: 10.1053/j.semradonc.2003.10.003. PubMed PMID: 14752733.
  23. Liu H, Schaal D, Curry H, Clark R, Magliari A, Kupelian P, et al. Review of cone beam computed tomography based online adaptive radiotherapy: current trend and future direction. Radiat Oncol. 2023;18(1):144. doi: 10.1186/s13014-023-02340-2. PubMed PMID: 37660057. PubMed PMCID: PMC10475190.
  24. Lavrova E, Garrett MD, Wang YF, Chin C, Elliston C, Savacool M, et al. Adaptive Radiation Therapy: A Review of CT-based Techniques. Radiol Imaging Cancer. 2023;5(4):e230011. doi: 10.1148/rycan.230011. PubMed PMID: 37449917. PubMed PMCID: PMC10413297.
  25. Galluzzi L, Aryankalayil MJ, Coleman CN, Formenti SC. Emerging evidence for adapting radiotherapy to immunotherapy. Nat Rev Clin Oncol. 2023;20(8):543-57. doi: 10.1038/s41571-023-00782-x. PubMed PMID: 37280366.
  26. Xia WL, Liang B, Men K, Zhang K, Tian Y, Li MH, et al. Prediction of adaptive strategies based on deformation vector field features for MR-guided adaptive radiotherapy of prostate cancer. Med Phys. 2023;50(6):3573-83. doi: 10.1002/mp.16192. PubMed PMID: 36583878.
  27. Morgan HE, Sher DJ. Adaptive radiotherapy for head and neck cancer. Cancers Head Neck. 2020;5:1. doi: 10.1186/s41199-019-0046-z. PubMed PMID: 31938572. PubMed PMCID: PMC6953291.
  28. Glide-Hurst CK, Lee P, Yock AD, Olsen JR, Cao M, Siddiqui F, et al. Adaptive Radiation Therapy (ART) Strategies and Technical Considerations: A State of the ART Review From NRG Oncology. Int J Radiat Oncol Biol Phys. 2021;109(4):1054-75. doi: 10.1016/j.ijrobp.2020.10.021. PubMed PMID: 33470210. PubMed PMCID: PMC8290862.
  29. Niraula D, Sun W, Jin J, Dinov ID, Cuneo K, Jamaluddin J, et al. A clinical decision support system for AI-assisted decision-making in response-adaptive radiotherapy (ARCliDS). Sci Rep. 2023;13(1):5279. doi: 10.1038/s41598-023-32032-6. PubMed PMID: 37002296. PubMed PMCID: PMC10066294.
  30. Prabhakar R, Laviraj MA, Haresh KP, Julka PK, Rath GK. Impact of patient setup error in the treatment of head and neck cancer with intensity modulated radiation therapy. Phys Med. 2010;26(1):26-33. doi: 10.1016/j.ejmp.2009.05.001. PubMed PMID: 19576833.
  31. Zhou Y, Ai Y, Han C, Zheng X, Yi J, Xie C, Jin X. Impact of setup errors on multi-isocenter volumetric modulated arc therapy for craniospinal irradiation. J Appl Clin Med Phys. 2020;21(11):115-23. doi: 10.1002/acm2.13044. PubMed PMID: 33070426. PubMed PMCID: PMC7700930.
  32. Siebers JV, Keall PJ, Wu Q, Williamson JF, Schmidt-Ullrich RK. Effect of patient setup errors on simultaneously integrated boost head and neck IMRT treatment plans. Int J Radiat Oncol Biol Phys. 2005;63(2):422-33. doi: 10.1016/j.ijrobp.2005.02.029. PubMed PMID: 16168835.
  33. Hanania AN, Mainwaring W, Ghebre YT, Hanania NA, Ludwig M. Radiation-Induced Lung Injury: Assessment and Management. 2019;156(1):150-62. doi: 10.1016/j.chest.2019.03.033. PubMed PMID: 30998908. PubMed PMCID: PMC8097634.
  34. Kang S, Li J, Ma J, Zhang W, Liao X, Qing H, et al. Evaluation of interfraction setup variations for  postmastectomy radiation therapy using EPID-based in vivo dosimetry. J Appl Clin Med Phys. 2019;20(10):43-52. doi: 10.1002/acm2.12712. PubMed PMID: 31541537. PubMed PMCID: PMC6806484.
  35. Swamidas J, Kirisits C, De Brabandere M, Hellebust TP, Siebert FA, Tanderup K. Image registration, contour propagation and dose accumulation of external beam and brachytherapy in gynecological radiotherapy. Radiother Oncol. 2020;143:1-11. doi: 10.1016/j.radonc.2019.08.023. PubMed PMID: 31564555.
  36. Boswell S, Tomé W, Jeraj R, Jaradat H, Mackie TR. Automatic registration of megavoltage to kilovoltage CT images in helical tomotherapy: an evaluation of the setup verification process for the special case of a rigid head phantom. Med Phys. 2006;33(11):4395-404. doi: 10.1118/1.2349698. PubMed PMID: 17153418.
  37. McNair HA, Franks KN, Van Herk M. On Target 2: Updated Guidance for Image-guided Radiotherapy. Clin Oncol (R Coll Radiol). 2022;34(3):187-8. doi: 10.1016/j.clon.2021.10.002. PubMed PMID: 34728132.
  38. Astreinidou E, Bel A, Raaijmakers CP, Terhaard CH, Lagendijk JJ. Adequate margins for random setup uncertainties in head-and-neck IMRT. Int J Radiat Oncol Biol Phys. 2005;61(3):938-44. doi: 10.1016/j.ijrobp.2004.11.016. PubMed PMID: 15708278.
  39. Amer A, Marchant T, Sykes J, Czajka J, Moore C. Imaging doses from the Elekta Synergy X-ray cone beam CT system. Br J Radiol. 2007;80(954):476-82. doi: 10.1259/bjr/80446730. PubMed PMID: 17684077.
  40. Laursen LV, Elstrøm UV, Vestergaard A, Muren LP, Petersen JB, Lindegaard JC, et al. Residual rotational set-up errors after daily cone-beam CT image guided radiotherapy of locally advanced cervical cancer. Radiother Oncol. 2012;105(2):220-5. doi: 10.1016/j.radonc.2012.08.012. PubMed PMID: 23022176.
  41. Cao Q, Zhu L, Wang J, Qu A, Yao L, Zhou S, et al. Assessments setup errors and target margin by 6D couch for primary cervical cancer. Zhonghua Yi Xue Za Zhi. 2015;95(9):689-92. PubMed PMID: 25976052.
  42. Xiaoyong W, Hui L, Conghua X, Gong Z, Hui Q, Ji C, el al. The setup errors in postoperative radiotherapy for endometrial and cervical cancer by cone beam CT. Chinese Journal of Radiological Medicine and Protection. 2014;34(7):523-5. doi: 10.3760/cma.j.issn.0254-5098.2014.07.011.
  43. Xin S. Setup errors in cone-beam computed tomography and their effects on acute radiation toxicity in cervical cancer radiotherapy. Genet Mol Res. 2015;14(3):10937-43. doi: 10.4238/2015.September.21.4. PubMed PMID: 26400321.
  44. Patni N, Burela N, Pasricha R, Goyal J, Soni TP, Kumar TS, Natarajan T. Assessment of three-dimensional setup errors in image-guided pelvic radiotherapy for uterine and cervical cancer using kilovoltage cone-beam computed tomography and its effect on planning target volume margins. J Cancer Res Ther. 2017;13(1):131-6. doi: 10.4103/0973-1482.199451. PubMed PMID: 28508846.
  45. Van De Bunt L, Jürgenliemk-Schulz IM, De Kort GA, Roesink JM, Tersteeg RJ, Van Der Heide UA. Motion and deformation of the target volumes during IMRT for cervical cancer: what margins do we need? Radiother Oncol. 2008;88(2):233-40. doi: 10.1016/j.radonc.2007.12.017. PubMed PMID: 18237798.
  46. Kim H, Beriwal S, Huq MS, Kannan N, Shukla G, Houser C. Evaluation of set-up uncertainties with daily kilovoltage image guidance in external beam radiation therapy for gynaecological cancers. Clin Oncol (R Coll Radiol). 2012;24(2):e39-45. doi: 10.1016/j.clon.2011.09.007. PubMed PMID: 21943780.
  47. Akimoto M, Nakamura M, Nakamura A, Mukumoto N, Kishi T, Goto Y, et al. Inter- and Intrafractional Variation in the 3-Dimensional Positions of Pancreatic Tumors Due to Respiration Under Real-Time Monitoring. Int J Radiat Oncol Biol Phys. 2017;98(5):1204-11. doi: 10.1016/j.ijrobp.2017.03.042. PubMed PMID: 28721905.
  48. Kaučić H, Kosmina D, Schwarz D, Čehobašić A, Leipold V, Pedišić I, et al. An Evaluation of Total Internal Motions of Locally Advanced Pancreatic Cancer during SABR Using Calypso® Extracranial Tracking, and Its Possible Clinical Impact on Motion Management. Curr Oncol. 2021;28(6):4597-610. doi: 10.3390/curroncol28060389. PubMed PMID: 34898575. PubMed PMCID: PMC8628737.
  49. Schubert LK, Westerly DC, Tomé WA, Mehta MP, Soisson ET, Mackie TR, et al. A comprehensive assessment by tumor site of patient setup using daily MVCT imaging from more than 3,800 helical tomotherapy treatments. Int J Radiat Oncol Biol Phys. 2009;73(4):1260-9. doi: 10.1016/j.ijrobp.2008.11.054. PubMed PMID: 19251098. PubMed PMCID: PMC2749998.
  50. Tong Y, Gong G, Chen J, Lu J, Liu T, Cheng P, Yin Y. The heterogeneous CTV-PTV margins should be given for different parts of tumors during tomotherapy. 2017;8(51):89086-94. doi: 10.18632/oncotarget.21631. PubMed PMID: 29179501. PubMed PMCID: PMC5687671.
  51. Gutfeld O, Kretzler AE, Kashani R, Tatro D, Balter JM. Influence of rotations on dose distributions in spinal stereotactic body radiotherapy (SBRT). Int J Radiat Oncol Biol Phys. 2009;73(5):1596-601. doi: 10.1016/j.ijrobp.2008.12.025. PubMed PMID: 19306757. PubMed PMCID: PMC2688767.