Document Type : Original Research

Authors

1 Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran

2 Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

3 Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

4 Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran

5 Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran

6 Department of Medical Physics and Medical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

7 MVLS College, The University of Glasgow, Glasgow, Scotland, UK

10.31661/jbpe.v0i0.2405-1759

Abstract

Background: Radiofrequency Electromagnetic Fields (RF-EMF) have raised concerns due to their potential adverse effects on reproductive health. However, emerging evidence indicates that exposure to low-level RF-EMF may induce adaptive responses, rendering cells or organisms more resilient to subsequent stressors.
Objective: To investigate whether exposure to 2.45 GHz Wi-Fi radiation could mitigate heat-induced damage in the reproductive system of male rats.
Material and Methods: In this factorial experimental study, 32 adult male Wistar rats were divided into four groups: control, RF-EMF alone, heat stress alone, and RF-EMF combined with heat stress. Rats in the RF-EMF group were exposed to RF-EMF for 2 hours daily over 52 days, while those in the heat group experienced 10 minutes of heat stress per day over the same period. The ‘RF-EMF + heat’ group received both RF-EMF and heat exposure. After 52 days, the testes and sperm parameters were assessed.
Results: Animals exposed to ‘RF-EMF + heat’ combined with heat showed significant improvements in testis volume, tubular epithelium, interstitium, cell counts, sperm quality, and Leydig cells compared to those exposed to heat alone (P<0.05). 
Conclusion: As far as we know, this is the first study to explore the potential protective effects of RF-EMF exposure against heat-induced structural abnormalities in the testes of male rats. Our findings suggest that RF-EMF exposure may mitigate heat-induced damage, possibly through the induction of adaptive responses. These results have implications for various fields, including reproductive biology, environmental health, and occupational safety, highlighting the need for further research to elucidate the underlying mechanisms.

Highlights

Reza Mahmoudi (Google Scholar)

Seyed Alireza Mortazavi (Google Scholar)

Keywords

  1. Banik S, Bandyopadhyay S, Ganguly S. Bioeffects of microwave--a brief review. Bioresour Technol. 2003;87(2):155-9. doi: 10.1016/s0960-8524(02)00169-4. PubMed PMID: 12765354.
  2. Fallahzadeh AR, Rezaei Z, Rahimi HR, Barmak MJ, Sadeghi H, Mehrabi S, et al. Evaluation of the Effect of Pentoxifylline on Cisplatin-Induced Testicular Toxicity in Rats. Toxicol Res. 2017;33(3):255-63. doi: 10.5487/TR.2017.33.3.255. PubMed PMID: 28744357. PubMed PMCID: PMC5523557.
  3. Mahmoudi R, Honarmand Z, Karbalay-Doust S, Jafari-Barmak M, Nikseresht M, Noorafshan A. Using curcumin to prevent structural impairments of testicles in rats induced by sodium metabisulfite. EXCLI J. 2017;16:583-92. doi: 10.17179/excli2017-143. PubMed PMID: 28694759. PubMed PMCID: PMC5491925.
  4. Kesari KK, Behari J. Effects of microwave at 2.45 GHz radiations on reproductive system of male rats. Toxicol Environ Chem. 2010;92(6):1135-47. doi: 10.1080/02772240903233637.
  5. Pérez-Crespo M, Pintado B, Gutiérrez-Adán A. Scrotal heat stress effects on sperm viability, sperm DNA integrity, and the offspring sex ratio in mice. Mol Reprod Dev. 2008;75(1):40-7. doi: 10.1002/mrd.20759. PubMed PMID: 17474098.
  6. Alizadeh N, Abbasi M, Abolhassani F, Amidi F, Mahmoudi R, Hoshino Y, et al. Effects of aminoguanidine on infertile varicocelized rats: A functional and morphological study. Daru. 2010;18(1):51-6. PubMed PMID: 22615594. PubMed PMCID: PMC3232080.
  7. Durairajanayagam D, Agarwal A, Ong C. Causes, effects and molecular mechanisms of testicular heat stress. Reprod Biomed Online. 2015;30(1):14-27. doi: 10.1016/j.rbmo.2014.09.018. PubMed PMID: 25456164.
  8. Zhou H, Randers-Pehrson G, Geard CR, Brenner DJ, Hall EJ, Hei TK. Interaction between radiation-induced adaptive response and bystander mutagenesis in mammalian cells. Radiat Res. 2003;160(5):512-6. doi: 10.1667/rr3083. PubMed PMID: 14565832. PubMed PMCID: PMC4041543.
  9. Joiner MC, Lambin P, Malaise EP, Robson T, Arrand JE, Skov KA, Marples B. Hypersensitivity to very-low single radiation doses: its relationship to the adaptive response and induced radioresistance. Mutat Res. 1996;358(2):171-83. doi: 10.1016/s0027-5107(96)00118-2. PubMed PMID: 8946022.
  10. Jeggo P, Defais TM, Samson L, Schendel P. An adaptive response of E. coli to low levels of alkylating agent: comparison with previously characterised DNA repair pathways. Mol Gen Genet. 1977;157(1):1-9. doi: 10.1007/BF00268680. PubMed PMID: 414071.
  11. Mahmoudi R, Mortazavi SMJ, Safari S, Nikseresht M, Mozdarani H, Jafari M, et al. Effects of microwave electromagnetic radiations emitted from common Wi-Fi routers on rats’ sperm count and motility. Int J Radiat Res. 2015;13(4):363-8. doi: 10.7508/ijrr.2015.04.010.
  12. Aminsharifi A, Hekmati P, Noorafshan A, Karbalay-Doost S, Nadimi E, Aryafar A, et al. Scrotal Cooling to Protect Against Cisplatin-induced Spermatogenesis Toxicity: Preliminary Outcome of an Experimental Controlled Trial. 2016;91:90-8. doi: 10.1016/j.urology.2015.12.062. PubMed PMID: 26845053.
  13. Karbalay-Doust S, Darabyan M, Sisakht M, Haddadi G, Sotoudeh N, Haghani M, Mortazavi SMJ. Extremely Low Frequency-Electromagnetic Fields (ELF-EMF) Can Decrease Spermatocyte Count and Motility and Change Testicular Tissue. J Biomed Phys Eng. 2023;13(2):135-46. doi: 10.31661/jbpe.v0i0.2011-1234. PubMed PMID: 37082547. PubMed PMCID: PMC10111108.
  14. Mohamadpour M, Noorafshan A, Karbalay-Doust S, Talaei-Khozani T, Aliabadi E. Protective effects of curcumin co-treatment in rats with establishing chronic variable stress on testis and reproductive hormones. Int J Reprod Biomed. 2017;15(7):447-52. PubMed PMID: 29177247. PubMed PMCID: PMC5601937.
  15. Noorafshan A, Hoseini L, Karbalay-Doust S, Nadimi E. A simple stereological method for estimating the number and the volume of the pancreatic beta cells. JOP. 2012;13(4):427-32. doi: 10.6092/1590-8577/802. PubMed PMID: 22797400.
  16. Dorph-Petersen KA, Nyengaard JR, Gundersen HJ. Tissue shrinkage and unbiased stereological estimation of particle number and size. J Microsc. 2001;204(Pt 3):232-46. doi: 10.1046/j.1365-2818.2001.00958.x. PubMed PMID: 11903800.
  17. Tschanz S, Schneider JP, Knudsen L. Design-based stereology: Planning, volumetry and sampling are crucial steps for a successful study. Ann Anat. 2014;196(1):3-11. doi: 10.1016/j.aanat.2013.04.011. PubMed PMID: 23769130.
  18. Von Bartheld CS. Distribution of Particles in the Z-axis of Tissue Sections: Relevance for Counting Methods. 2012;10(1):66-75. PubMed PMID: 23874137. PubMed PMCID: PMC3713707.
  19. Mortazavi SMJ, Tavassoli A, Ranjbari F, Moammaiee P. Effects of laptop computers’ electromagnetic field on sperm quality. J Reprod Infertil. 2010;11(4):251-8.
  20. Mailankot M, Kunnath AP, Jayalekshmi H, Koduru B, Valsalan R. Radio frequency electromagnetic radiation (RF-EMR) from GSM (0.9/1.8GHz) mobile phones induces oxidative stress and reduces sperm motility in rats. Clinics (Sao Paulo). 2009;64(6):561-5. doi: 10.1590/s1807-59322009000600011. PubMed PMID: 19578660. PubMed PMCID: PMC2705159.
  21. Avendaño C, Mata A, Sanchez Sarmiento CA, Doncel GF. Use of laptop computers connected to internet through Wi-Fi decreases human sperm motility and increases sperm DNA frag Fertil Steril. 2012;97(1):39-45.e2. doi: 10.1016/j.fertnstert.2011.10.012. PubMed PMID: 22112647.
  22. Gohari FA, Saranjam B, Asgari M, Omidi L, Ekrami H, Moussavi-Najarkola SA. An Experimental Study of the Effects of Combined Exposure to Microwave and Heat on Gene Expression and Sperm Parameters in Mice. J Hum Reprod Sci. 2017;10(2):128-34. doi: 10.4103/jhrs.JHRS_136_16. PubMed PMID: 28904503. PubMed PMCID: PMC5586087.
  23. Çetkin M, Kızılkan N, Demirel C, Bozdağ Z, Erkılıç S, Erbağcı H. Quantitative changes in testicular structure and function in rat exposed to mobile phone radiation. 2017;49(10):e12761. doi: 10.1111/and.12761. PubMed PMID: 28124386.
  24. Miura M, Sasagawa I, Suzuki Y, Nakada T, Fujii J. Apoptosis and expression of apoptosis-related genes in the mouse testis following heat exposure. Fertil Steril. 2002;77(4):787-93. doi: 10.1016/s0015-0282(01)03255-1. PubMed PMID: 11937135.
  25. Afiyani A, Deemeh MR, Tavalaee M, Nasr Esfahani MH. P-11: Evaluation of Heat Shock Protein A2 in Male Rats before and after Varicocele Induction. Int J Fertil Steril. 2014;8(Suppl 1):41.
  26. Yin Y, Hawkins KL, DeWolf WC, Morgentaler A. Heat stress causes testicular germ cell apoptosis in adult mice. J Androl. 1997;18(2):159-65. PubMed PMID: 9154510.
  27. Rockett JC, Mapp FL, Garges JB, Luft JC, Mori C, Dix DJ. Effects of hyperthermia on spermatogenesis, apoptosis, gene expression, and fertility in adult male mice. Biol Reprod. 2001;65(1):229-39. doi: 10.1095/biolreprod65.1.229. PubMed PMID: 11420244.
  28. Allan DJ, Harmon BV, Roberts SA. Spermatogonial apoptosis has three morphologically recognizable phases and shows no circadian rhythm during normal spermatogenesis in the rat. Cell Prolif. 1992;25(3):241-50. doi: 10.1111/j.1365-2184.1992.tb01399.x. PubMed PMID: 1596537.
  29. Lue YH, Hikim AP, Swerdloff RS, Im P, Taing KS, Bui T, Leung A, Wang C. Single exposure to heat induces stage-specific germ cell apoptosis in rats: role of intratesticular testosterone on stage specificity. 1999;140(4):1709-17. doi: 10.1210/endo.140.4.6629. PubMed PMID: 10098507.
  30. Li Z, Tian J, Cui G, Wang M, Yu D. Effects of local testicular heat treatment on Leydig cell hyperplasia and testosterone biosynthesis in rat testes. Reprod Fertil Dev. 2016;28(9):1424-32. doi: 10.1071/RD14370. PubMed PMID: 25782017.
  31. Sannino A, Sarti M, Reddy SB, Prihoda TJ, Vijayalaxmi, Scarfì MR. Induction of adaptive response in human blood lymphocytes exposed to radiofrequency radiation. Radiat Res. 2009;171(6):735-42. doi: 10.1667/RR1687.1. PubMed PMID: 19580480.
  32. Mortazavi S. Window theory in non-ionizing radiation-induced adaptive responses. Dose Response. 2013;11(2):293-4. doi: 10.2203/dose-response.12-060.Mortazavi. PubMed PMID: 23930108. PubMed PMCID: PMC3682204.
  33. Cook CM, Saucier DM, Thomas AW, Prato FS. Exposure to ELF magnetic and ELF-modulated radiofrequency fields: the time course of physiological and cognitive effects observed in recent studies (2001-2005). 2006;27(8):613-27. doi: 10.1002/bem.20247. PubMed PMID: 16724317.
  34. Mortazavi SMJ, Mostafavi-Pour Z, Daneshmand M, Zal F, Zare R, Mosleh-Shirazi MA. Adaptive Response Induced by Pre-Exposure to 915 MHz Radiofrequency: A Possible Role for Antioxidant Enzyme Activity. J Biomed Phys Eng. 2017;7(2):137-42. PubMed PMID: 28580335. PubMed PMCID: PMC5447250.