Document Type : Original Research

Authors

1 Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

2 Inorganic Chemistry Department, Chemistry Faculty, University of Tabriz, Tabriz, Iran

3 Anesthesia Techniques Department, College of Health and Medical Techniques, Al_Mustaqbal University, 51001, Babylon, Iraq

4 College of Pharmacy, University of Babylon, Iraq

5 Department of Radiology, Faculty of Allied Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran

6 Medical Radiation Sciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

10.31661/jbpe.v0i0.2403-1736

Abstract

Background: Application of the nanomaterials to preparing X-ray shields and successfully treating multiresistant microorganisms has attracted great attention in modern life.
Objective: This study aimed to prepare flexible silicone-based matrices containing Bi2O3, PbO, or Bi2O3/PbO nanoparticles and select a cost-effective, cytocompatible, and antibacterial/antifungal X-ray shield in clinical radiography.
Material and Methods: In this experimental study, we prepared the nanoparticles by the modified biosynthesis method and fabricated the X-ray shields containing 20 wt% of the nanoparticles. The X-ray attenuation percentage and Half Value Layer (HVL) of the shields were investigated for the photon energies in the range of 40-100 kVp in clinical radiography. The antibacterial/antifungal activities of the shields were evaluated using a colony count method for the gram-negative (Escherichia coli), and gram-positive (Enterococcus faecalis) bacteria, and Candida albicans fungus. The shield toxicity was investigated on A549 cells.
Results: The highest X-ray attenuation percentage and the lowest HVL were obtained using the shield containing Bi2O3 nanoparticles. Although all shields displayed antimicrobial activity, the shield containing Bi2O3/PbO nanoparticles showed the most effective reduction in the colony counts. Both X-ray shields containing nano Bi2O3 and Bi2O3/PbO demonstrated high cytocompatibility on A549 cells at a concentration as high as 500 µg/ml. The shield with PbO nanoparticles was also cytocompatible at a concentration of 50 µg/ml.  
Conclusion: The best X-ray attenuation performance is attributed to the silicone-based matrix with nano Bi2O3; however, the flexible shield with Bi2O3/PbO nanoparticles can be cost-effective and cytocompatible with the best antibacterial/antifungal properties.

Highlights

Baharak Divband (Google Scholar)

Nahideh Gharehaghaji (Google Scholar)

Keywords

  1. Chandrika BM, Manjunatha HC, Sridhar KN, Ambika MR, Seenappa L, Manjunatha S, et al. Synthesis, physical, optical and radiation shielding properties of Barium-Bismuth Oxide Borate-A novel nanomaterial. Nucl Eng Technol. 2023;55:1783-90. doi: 10.1016/j.net.2023.01.
  2. Moonkum N, Pilapong C, Daowtak K, Tochaikul G. Radiation Protection Device Composite of Epoxy Resin and Iodine Contrast Media for Low-Dose Radiation Protection in Diagnostic Radiology. Polymers (Basel). 2023;15(2):430. doi: 10.3390/polym15020430. PubMed PMID: 36679309. PubMed PMCID: PMC9865924.
  3. Türkaslan SS, Ugur ŞS, Türkaslan BE, Fantuzzi N. Evaluating the X-ray-Shielding Performance of Graphene-Oxide-Coated Nanocomposite Fabric. Materials (Basel). 2022;15(4):1441. doi: 10.3390/ma15041441. PubMed PMID: 35207983. PubMed PMCID: PMC8875570.
  4. Prabhu S, Bubbly SG, Gudennavar SB. X-ray and γ-ray shielding efficiency of polymer composites: choice of fillers, effect of loading and filler size, photon energy and multifunctionality. Polym Rev. 2023;63:246-88. doi: 10.1080/15583724.2022.2067867.
  5. Shirkhanloo H, Safari M, Amini SM, Rashidi M. Novel semisolid design based on bismuth oxide (Bi2O3) nanoparticles for radiation protection. Nanomed Res J. 2017;2:230-8. doi: 10.22034/nmrj.2017.04.004.
  6. Verma S, Sarma B, Chaturvedi K, Malvi D, Srivastava AK. Emerging graphene and carbon nanotube-based carbon composites as radiations shielding materials for X-rays and gamma rays: a review. Compos Interfaces. 2023;30:223-51. doi: 10.1080/09276440.2022.2094571.
  7. Azman MN, Abualroos NJ, Yaacob KA, Zainon R. Feasibility of nanomaterial tungsten carbide as lead-free nanomaterial-based radiation shielding. Radiat Phys Chem. 2022;202:110492. doi: 10.1016/j.radphyschem.2022.110492.
  8. Movahedi MM, Abdi A, Mehdizadeh AR, Dehghan N, Heidari E, Masumi Y, Abbaszadeh M. Novel paint design based on nanopowder to protection against X and gamma rays. Indian J Nucl Med. 2014;29:18-21. doi: 10.4103/0972-3919.125763. PubMed PMID: 24591777. PubMed PMCID: PMC3928744.
  9. Aghaz A, Faghihi R, Mortazavi SMJ, Haghparast A, Mehdizadeh S, Sina S. Radiation attenuation properties of shields containing micro and nano WO3 in diagnostic X-ray energy range. Int J Radiat Res. 2016;14:127-31. doi: 10.18869/acadpub.ijrr.14.2.127.
  10. Rahmat R, Halima N, Heryanto H, Sesa E, Tahir D. Improvement X-ray radiation shield characteristics of composite cement/Titanium dioxide (TiO2)/Barium carbonate (BaCO3): Stability crystal structure and chemical bonding. Radiat Phys Chem. 2023;204:110634. doi: 10.1016/j.radphyschem.2022.110634.
  11. Safari A, Rafie P, Taeb S, Najafi M, Mortazavi SMJ. Development of Lead-Free Materials for Radiation Shielding in Medical Settings: A Review. J Biomed Phys Eng. 2024;14(3):229-44. doi: 10.31661/jbpe.v0i0.2404-1742. PubMed PMID: 39027711. PubMed PMCID: PMC11252547.
  12. Aral N, Banu Nergis F, Candan C. An alternative X-ray shielding material based on coated textiles. Text Res J. 2016;86:803-11. doi: 10.1177/0040517515590409.
  13. Winter H, Brown AL, Goforth AM. Bismuth-based nano-and microparticles in X-ray contrast, radiation therapy, and radiation shielding applications. Bismuth Adv Appl Defects Charact. 2018;71:1121-41. doi: 10.5772/intechopen.76413.
  14. Geoffrion LD, Medina-Cruz D, Kusper M, Elsaidi S, Watanabe F, Parajuli P, et al. Bi2O3 nano-flakes as a cost-effective antibacterial agent. Nanoscale Adv. 2021;3(14):4106-18. doi: 10.1039/d0na00910e. PubMed PMID: 36132830. PubMed PMCID: PMC9417114.
  15. Botelho MZ, Künzel R, Okuno E, Levenhagen RS, Basegio T, Bergmann CP. X-ray transmission through nanostructured and microstructured CuO materials. Appl Radiat Isot. 2011;69(2):527-30. doi: 10.1016/j.apradiso.2010.11.002. PubMed PMID: 21112215.
  16. Shahzad K, Kausar A, Manzoor S, Rakha SA, Uzair A, Sajid M, et al. Views on radiation shielding efficiency of polymeric composites/nanocomposites and multi-layered materials: current state and advancements. 2022;3:1-20. doi: 10.3390/radiation3010001.
  17. Samadian H, Mobasheri H, Hasanpour S, Faridi-Majid R. Needleless electrospinning system, an efficient platform to fabricate carbon nanofibers. J Nano Res. 2017;50:78-89. doi: 10.4028/www.scientific.net/JNanoR.50.78.
  18. Asari Shik N, Gholamzadeh L. X-ray shielding performance of the EPVC composites with micro- or nanoparticles of WO3, PbO or Bi2O3. Appl Radiat Isot. 2018;139:61-5. doi: 10.1016/j.apradiso.2018.03.025. PubMed PMID: 29723694.
  19. Abunahel BM, Mustafa IS, Azman NZ. Characteristics of X-ray attenuation in nano-sized bismuth oxide/epoxy-polyvinyl alcohol (PVA) matrix composites. Appl Phys A. 2018;124:1-7. doi: 10.1007/s00339-018-2254-5.
  20. Verma S, Mili M, Sharma C, Bajpai H, Pal K, Qureshi D, et al. Advanced X-ray shielding and antibacterial smart multipurpose fabric impregnated with polygonal shaped bismuth oxide nanoparticles in carbon nanotubes via green synthesis. Green Chem Lett Rev. 2021;14:272-85. doi: 10.1080/17518253.2021.1912192.
  21. Mehnati P, Yousefi Sooteh M, Malekzadeh R, Divband B. Synthesis and characterization of nano Bi2O3 for radiology shield. Nanomed J. 2018;5:222-6. doi: 10.22038/NMJ.2018.05.00006.
  22. Cho JH, Kim MS, Rhim JD. Comparison of radiation shielding ratios of nano-sized bismuth trioxide and molybdenum. Radiat Eff Defects Solids. 2015;170:651-8. doi: 10.1080/10420150.2015.1080703.
  23. Noor Azman NZ, Musa NF, Ab Razak NN, Ramli RM, Mustafa IS, Rahman AA, Yahaya NZ. Effect of Bi2O3 particle sizes and addition of starch into Bi2O3–PVA composites for X-ray shielding. Appl Phys A. 2016;122:818. doi: 10.1007/s00339-016-0329-8.
  24. Jayakumar S, Saravanan T, Philip J. Preparation, characterization and X-ray attenuation property of Gd2O3-based nanocomposites. Appl Nanosci. 2017;7:919-31. doi: 10.1007/s13204-017-0631-6.
  25. Ghasemi-Nejad M, Gholamzadeh L, Adeli R, Shirmardi SP. A comprehensive study of the antibacterial and shielding properties of micro and nano-EPVC lead-free shields. Phys Scr. 2022;97:055303. doi: 10.1088/1402-4896/ac6077.
  26. Özdemir T, Güngör A, Akbay IK, Uzun H, Babucçuoglu Y. Nano lead oxide and epdm composite for development of polymer based radiation shielding material: Gamma irradiation and attenuation tests. Radiat Phys Chem. 2018;144:248-55. doi: 10.1016/j.radphyschem.2017.08.021.
  27. Hashemi SA, Mousavi SM, Faghihi R, Arjmand M, Rahsepar M, Bahrani S, et al. Superior X-ray Radiation Shielding Effectiveness of Biocompatible Polyaniline Reinforced with Hybrid Graphene Oxide-Iron Tungsten Nitride Flakes. Polymers (Basel). 2020;12(6):1407. doi: 10.3390/polym12061407. PubMed PMID: 32585991. PMCID: PubMed PMC7361692.
  28. Hernandez-Delgadillo R, Velasco-Arias D, Martinez-Sanmiguel JJ, Diaz D, Zumeta-Dube I, Arevalo-Niño K, Cabral-Romero C. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation. Int J Nanomedicine. 2013;8:1645-52. doi: 10.2147/IJN.S38708. PubMed PMID: 23637533. PubMed PMCID: PMC3639116.
  29. Qayyum A, Batool Z, Fatima M, Buzdar SA, Ullah H, Nazir A, et al. Antibacterial and in vivo toxicological studies of Bi2O3/CuO/GO nanocomposite synthesized via cost effective methods. Sci Rep. 2022;12(1):14287. doi: 10.1038/s41598-022-17332-7. PubMed PMID: 35995797. PubMed PMCID: PMC9395419.
  30. Reddy BC, Seenappa L, Manjunatha HC, Vidya YS, Sridhar KN, Kumar CM, Pasha UM. Study of antimicrobial applications of Bismuth Oxide. Mater Today Proc. 2022;57:112-5. doi: 10.1016/j.matpr.2022.01.441.
  31. Dalvand LF, Hosseini F, Dehaghi SM, Torbati ES. Inhibitory Effect of Bismuth Oxide Nanoparticles Produced by Bacillus licheniformis on Methicillin-Resistant Staphylococcus aureus Strains (MRSA). Iran J Biotechnol. 2018;16(4):e2102. doi: 10.21859/ijb.2102. PubMed PMID: 31457035. PubMed PMCID: PMC6697830.
  32. Rashed HH, Fadhil FA, Hadi IH. Preparation and characterization of lead oxide nanoparticles by laser ablation as antibacterial agent. Baghdad Sci J. 2017;14(4):0801. doi: 10.21123/bsj.2017.14.4.0801.
  33. Shoag JM, Michael Burns K, Kahlon SS, Parsons PJ, Bijur PE, Taragin BH, Markowitz M. Lead poisoning risk assessment of radiology workers using lead shields. Arch Environ Occup Health. 2020;75(1):60-4. doi: 10.1080/19338244.2018.1553843. PubMed PMID: 30676933.
  34. Miri A, Sarani M, Hashemzadeh A, Mardani Z, Darroudi M. Biosynthesis and cytotoxic activity of lead oxide nanoparticles. Green Chem Lett Rev. 2018;11:567-72. doi: 10.1080/17518253.2018.1547926.
  35. Mokhtari H, Eskandarinezhad M, Barhaghi MS, Asnaashari S, Sefidan FY, Abedi A, Alizadeh S. Comparative antibacterial effects of ginger and marjoram extract versus conventional irrigants on mature Enterococcus faecalis biofilms: An in vitro study. J Clin Exp Dent. 2023;15(4):e304-10. doi: 10.4317/jced.60081. PubMed PMID: 37152491. PubMed PMCID: PMC10155938.
  36. Gharehaghaji N, Divband B. PEGylated Magnetite/Hydroxyapatite: A Green Nanocomposite for T2-Weighted MRI and Curcumin Carrying. Evid Based Complement Alternat Med. 2022;2022:1337588. doi: 10.1155/2022/1337588. PubMed PMID: 35722138. PubMed PMCID: PMC9201731.
  37. Wells AF. Structural Inorganic Chemistry. 4th ed. Oxford: Clarendon Press; 1975.
  38. Malmros G. The Crystal Structure of alpha-Bi2O2. Acta Chem Scand. 1970;24:384-96. doi: 10.3891/acta.chem.scand.24-0384.
  39. Wahyuni F, Sakti SP, Santjojo DJ, Juswono UP. Bismuth oxide filled polyester composites for X-ray radiation shielding applications. Polish J Environ Stud. 2022;3:3985-90. doi: 10.15244/pjoes/146935.
  40. Thumwong A, Darachai J, Saenboonruang K. Comparative X-ray Shielding Properties of Single-Layered and Multi-Layered Bi2O3/NR Composites: Simulation and Numerical Studies. Polymers (Basel). 2022;14(9):1788. doi: 10.3390/polym14091788. PubMed PMID: 35566961. PubMed PMCID: PMC9099843.
  41. National Council on Radiation Protection and Measurements.Structural shielding design for medical x-ray imaging facilities. Report No. 147; NCRP; 2004.
  42. Aghamiri MR, Mortazavi SMJ, Tayebi M, Mosleh-Shirazi MA, Baharvand H, Tavakkoli-Golpayegani A, Zeinali-Rafsanjani B. A novel design for production of efficient flexible lead-free shields against X-ray photons in diagnostic energy range. J Biomed Phys Eng. 2011;1:17.