Document Type : Original Research

Authors

1 Department of Bioimaging, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran

2 Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, Quebec, Canada

3 Department of Neurology, School of Medicine, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran

4 Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran

5 Department of Epidemiology & Biostatistics, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran

6 Department of Medical Physics & Biomedical Eng., School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran

7 School of Computing and Engineering, University of West London, UK

8 Concordia University, PERFORM Center, School of Health, Montreal, Quebec, Canada

9 Magnetic Resonance Imaging Lab, National Brain Mapping Laboratory (NBML), Tehran, Iran

10.31661/jbpe.v0i0.2407-1789

Abstract

Background: Acquiring new knowledge necessitates alterations at the synaptic level within the brain. Glutamate, a pivotal neurotransmitter, plays a critical role in these processes, particularly in learning and memory formation. Although previous research has explored glutamate’s involvement in cognitive functions, a comprehensive understanding of its real-time dynamics remains elusive during memory tasks.
Objective: This study aimed to investigate glutamate modulation during memory tasks in the right Dorsolateral Prefrontal Cortex (DLPFC) and parieto-occipital regions using functional Magnetic Resonance Spectroscopy (fMRS).
Material and Methods: This experimental research applied fMRS acquisition concurrently with a modified Sternberg’s verbal working memory task for fourteen healthy right-handed participants (5 females, mean age=30.64±4.49). The glutamate/total-creatine (Glu/tCr) ratio was quantified by LCModel in the DLPFC and parieto-occipital voxels while applying the tissue corrections.
Results: The significantly higher Glu/tCr modulation was observed during the task with a trend of increased modulation with memory load in both the DLPFC (19.9% higher, P-value=0.018) and parieto-occipital (33% higher, P-value=0.046) regions compared to the rest. 
Conclusion: Our pioneering fMRS study has yielded groundbreaking insights into brain functions during S-term Memory (STM) and learning. This research provides valuable methodological advancements for investigating the metabolic functions of both healthy and disordered brains. Based on the findings, cognitive demands directly correlate with glutamate levels, highlighting the neurochemical underpinnings of cognitive processing. Additionally, the obtained results potentially challenge the traditional left-hemisphere-centric model of verbal working memory, leading to the deep vision of hemispheric contributions to cognitive functions.

Highlights

Hossein Mohammadi (PubMed)

Nasim Dadashi Serej (Google Scholar)

Nader Riyahi Alam (Google Scholar)

Keywords

  1. Kumaran D. Short-term memory and the human hippocampus. J Neurosci. 2008;28(15):3837-8. doi: 10.1523/JNEUROSCI.0046-08.2008. PubMed PMID: 18400882. PubMed PMCID: PMC6670459.
  2. Atkinson RC, Shiffrin RM. Human memory: A proposed system and its control processes. Psychology of Learning and Motivation. 1968;2:89-195. doi: 10.1016/S0079-7421(08)60422-3.
  3. Kennedy MB. Synaptic Signaling in Learning and Memory. Cold Spring Harb Perspect Biol. 2013;8(2):a016824. doi: 10.1101/cshperspect.a016824. PubMed PMID: 24379319. PubMed PMCID: PMC4743082.
  4. Lally N, Mullins PG, Roberts MV, Price D, Gruber T, Haenschel C. Glutamatergic correlates of gamma-band oscillatory activity during cognition: a concurrent ER-MRS and EEG study. Neuroimage. 2014;85:823-33. doi: 10.1016/j.neuroimage.2013.07.049. PubMed PMID: 23891885.
  5. Magistretti PJ, Pellerin L, Rothman DL, Shulman RG. Energy on demand. 1999;283(5401):496-7. doi: 10.1126/science.283.5401.496. PubMed PMID: 9988650.
  6. Reiner A, Levitz J. Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. 2018;98(6):1080-98. doi: 10.1016/j.neuron.2018.05.018. PubMed PMID: 29953871. PubMed PMCID: PMC6484838.
  7. Pal MM. Glutamate: The Master Neurotransmitter and Its Implications in Chronic Stress and Mood Disorders. Front Hum Neurosci. 2021;15:722323. doi: 10.3389/fnhum.2021.722323. PubMed PMID: 34776901. PubMed PMCID: PMC8586693.
  8. Castner SA, Williams GV. Tuning the engine of cognition: a focus on NMDA/D1 receptor interactions in prefrontal cortex. Brain Cogn. 2007;63(2):94-122. doi: 10.1016/j.bandc.2006.11.002. PubMed PMID: 17204357.
  9. D’Esposito M. From cognitive to neural models of working memory. Philos Trans R Soc Lond B Biol Sci. 2007;362(1481):761-72. doi: 10.1098/rstb.2007.2086. PubMed PMID: 17400538. PubMed PMCID: PMC2429995.
  10. Miller EK, Erickson CA, Desimone R. Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J Neurosci. 1996;16(16):5154-67. doi: 10.1523/JNEUROSCI.16-16-05154.1996. PubMed PMID: 8756444. PubMed PMCID: PMC6579322.
  11. Romo R, Brody CD, Hernández A, Lemus L. Neuronal correlates of parametric working memory in the prefrontal cortex. Nature. 1999;399(6735):470-3. doi: 10.1038/20939. PubMed PMID: 10365959.
  12. Koolschijn RS, Shpektor A, Clarke WT, Ip IB, Dupret D, Emir UE, Barron HC. Memory recall involves a transient break in excitatory-inhibitory balance. 2021;10:e70071. doi: 10.7554/eLife.70071. PubMed PMID: 34622779. PubMed PMCID: PMC8516417.
  13. Rosen ML, Sheridan MA, Sambrook KA, Peverill MR, Meltzoff AN, McLaughlin KA. The Role of Visual Association Cortex in Associative Memory Formation across Development. J Cogn Neurosci. 2018;30(3):365-80. doi: 10.1162/jocn_a_01202. PubMed PMID: 29064341. PubMed PMCID: PMC5792361.
  14. Super H. Working memory in the primary visual cortex. Arch Neurol. 2003;60(6):809-12. doi: 10.1001/archneur.60.6.809. PubMed PMID: 12810483.
  15. Nowogrodzki J. How the ‘mind’s eye’ calls up visual memories from the brain. 2024;630(8018):802. doi: 10.1038/d41586-024-01757-3. PubMed PMID: 38877220.
  16. Nie J, Zhang Z, Wang B, Li H, Xu J, Wu S, et al. Different memory patterns of digits: a functional MRI study. J Biomed Sci. 2019;26(1):22. doi: 10.1186/s12929-019-0516-y. PubMed PMID: 30832663. PubMed PMCID: PMC6398246.
  17. Attout L, Fias W, Salmon E, Majerus S. Common neural substrates for ordinal representation in short-term memory, numerical and alphabetical cognition. PLoS One. 2014;9(3):e92049. doi: 10.1371/journal.pone.0092049. PubMed PMID: 24632823. PubMed PMCID: PMC3954845.
  18. Stanley JA, Burgess A, Khatib D, Ramaseshan K, Arshad M, Wu H, Diwadkar VA. Functional dynamics of hippocampal glutamate during associative learning assessed with in vivo 1H functional magnetic resonance spectroscopy. 2017;153:189-97. doi: 10.1016/j.neuroimage.2017.03.051. PubMed PMID: 28363835. PubMed PMCID: PMC5498221.
  19. Spurny B, Seiger R, Moser P, Vanicek T, Reed MB, Heckova E, Michenthaler P, et al. Hippocampal GABA levels correlate with retrieval performance in an associative learning paradigm. Neuroimage. 2020;204:116244. doi: 10.1016/j.neuroimage.2019.116244. PubMed PMID: 31606475. PubMed PMCID: PMC7610791.
  20. Woodcock EA, Anand C, Khatib D, Diwadkar VA, Stanley JA. Working Memory Modulates Glutamate Levels in the Dorsolateral Prefrontal Cortex during 1H fMRS. Front Psychiatry. 2018;9:66. doi: 10.3389/fpsyt.2018.00066. PubMed PMID: 29559930. PubMed PMCID: PMC5845718.
  21. Emad-Ul-Haq Q, Hussain M, Aboalsamh H, Bamatraf S, Malik AS, Amin HU. A Review on understanding Brain, and Memory Retention and Recall Processes using EEG and fMRI techniques [Internet]. arXiv [Preprint]. 2019 [cited 2019 April 30]. Available from: https://arxiv.org/abs/1905.02136.
  22. Boly M, Massimini M, Tsuchiya N, Postle BR, Koch C, Tononi G. Are the Neural Correlates of Consciousness in the Front or in the Back of the Cerebral Cortex? Clinical and Neuroimaging Evidence. J Neurosci. 2017;37(40):9603-13. doi: 10.1523/JNEUROSCI.3218-16.2017. PubMed PMID: 28978697. PubMed PMCID: PMC5628406.
  23. Emch M, Von Bastian CC, Koch K. Neural Correlates of Verbal Working Memory: An fMRI Meta-Analysis. Front Hum Neurosci. 2019;13:180. doi: 10.3389/fnhum.2019.00180. PubMed PMID: 31244625. PubMed PMCID: PMC6581736.
  24. Mohammadi H, Changizi V, Riyahi Alam N, Rahiminejad F, Soleimani M, Qardashi A. Measurement of Post-Treatment Changes in Brain Metabolites in Patients with Generalized Anxiety Disorder using Magnetic Resonance Spectroscopy. J Biomed Phys Eng. 2022;12(1):51-60. doi: 10.31661/jbpe.v0i0.1224. PubMed PMID: 35155293. PubMed PMCID: PMC8819263.
  25. Rothman DL, Behar KL, Hyder F, Shulman RG. In vivo NMR studies of the glutamate neurotransmitter flux and neuroenergetics: implications for brain function. Annu Rev Physiol. 2003;65:401-27. doi: 10.1146/annurev.physiol.65.092101.142131. PubMed PMID: 12524459.
  26. Quadrelli S, Mountford C, Ramadan S. Hitchhiker’s Guide to Voxel Segmentation for Partial Volume Correction of In Vivo Magnetic Resonance Spectroscopy. Magn Reson Insights. 2016;9:1-8. doi: 10.4137/MRI.S32903. PubMed PMID: 27147822. PubMed PMCID: PMC4849426.
  27. Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging. 2001;20(1):45-57. doi: 10.1109/42.906424. PubMed PMID: 11293691.
  28. Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 1993;30(6):672-9. doi: 10.1002/mrm.1910300604. PubMed PMID: 8139448.
  29. Ernst T, Kreis R, Ross BD. Absolute quantitation of water and metabolites in the human brain. I. Compartments and water. Journal of Magnetic Resonance, Series B. 1993;102(1):1-8. doi: 10.1006/jmrb.1993.1055.
  30. Bansal R, Hao X, Liu F, Xu D, Liu J, Peterson BS. The effects of changing water content, relaxation times, and tissue contrast on tissue segmentation and measures of cortical anatomy in MR images. Magn Reson Imaging. 2013;31(10):1709-30. doi: 10.1016/j.mri.2013.07.017. PubMed PMID: 24055410. PubMed PMCID: PMC4241465.
  31. Zhu XH, Chen W. Observed BOLD effects on cerebral metabolite resonances in human visual cortex during visual stimulation: a functional (1)H MRS study at 4 T. Magn Reson Med. 2001;46(5):841-7. doi: 10.1002/mrm.1267. PubMed PMID: 11675633.
  32. Chang WS, Liang WK, Li DH, Muggleton NG, Balachandran P, Huang NE, Juan CH. The association between working memory precision and the nonlinear dynamics of frontal and parieto-occipital EEG activity. Sci Rep. 2023;13(1):14252. doi: 10.1038/s41598-023-41358-0. PubMed PMID: 37653059. PubMed PMCID: PMC10471634.
  33. Dimitriadis SI, Sun Y, Thakor NV, Bezerianos A. Causal Interactions between Frontal(θ) - Parieto-Occipital(α2) Predict Performance on a Mental Arithmetic Task. Front Hum Neurosci. 2016;10:454. doi: 10.3389/fnhum.2016.00454. PubMed PMID: 27683547. PubMed PMCID: PMC5022172.
  34. Smucny J, Dienel SJ, Lewis DA, Carter CS. Mechanisms underlying dorsolateral prefrontal cortex contributions to cognitive dysfunction in schizophrenia. 2022;47(1):292-308. doi: 10.1038/s41386-021-01089-0. PubMed PMID: 34285373. PubMed PMCID: PMC8617156.
  35. Tan PK, Tang C, Herikstad R, Pillay A, Libedinsky C. Distinct Lateral Prefrontal Regions Are Organized in an Anterior-Posterior Functional Gradient. J Neurosci. 2023;43(38):6564-72. doi: 10.1523/JNEUROSCI.0007-23.2023. PubMed PMID: 37607819. PubMed PMCID: PMC10513068.
  36. Gratton C, Sun H, Petersen SE. Control networks and hubs. 2018;55(3):e13032. doi: 10.1111/psyp.13032. PubMed PMID: 29193146. PubMed PMCID: PMC5811327.
  37. Wang M, Yang P, Wan C, Jin Z, Zhang J, Li L. Evaluating the Role of the Dorsolateral Prefrontal Cortex and Posterior Parietal Cortex in Memory-Guided Attention With Repetitive Transcranial Magnetic Stimulation. Front Hum Neurosci. 2018;12:236. doi: 10.3389/fnhum.2018.00236. PubMed PMID: 29930501. PubMed PMCID: PMC5999747.
  38. Verkhratsky A, Schousboe A, Parpura V. Glutamate and ATP: The Crossroads of Signaling and Metabolism in the Brain. Adv Neurobiol. 2014;11:1-12. doi: 10.1007/978-3-319-08894-5_1. PubMed PMID: 25236721.
  39. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361(6407):31-9. doi: 10.1038/361031a0. PubMed PMID: 8421494.
  40. Hancu I. Optimized glutamate detection at 3T. J Magn Reson Imaging. 2009;30(5):1155-62. doi: 10.1002/jmri.21936. PubMed PMID: 19856449. PubMed PMCID: PMC2783923.
  41. Hancu I, Port J. The case of the missing glutamine. NMR Biomed. 2011;24(5):529-35. doi: 10.1002/nbm.1620. PubMed PMID: 21264975.
  42. Di Maio V. The glutamatergic synapse: a complex machinery for information processing. Cogn Neurodyn. 2021;15(5):757-81. doi: 10.1007/s11571-021-09679-w. PubMed PMID: 34603541. PubMed PMCID: PMC8448802.
  43. Le Ray D, Cattaert D. Active motor neurons potentiate their own sensory inputs via glutamate-induced long-term potentiation. J Neurosci. 1999;19(4):1473-83. doi: 10.1523/JNEUROSCI.19-04-01473.1999. PubMed PMID: 9952423. PubMed PMCID: PMC6786021.
  44. Kodama T, Hikosaka K, Watanabe M. Differential changes in glutamate concentration in the primate prefrontal cortex during spatial delayed alternation and sensory-guided tasks. Exp Brain Res. 2002;145(2):133-41. doi: 10.1007/s00221-002-1084-y. PubMed PMID: 12110952.
  45. Hu Y, Chen X, Gu H, Yang Y. Resting-state glutamate and GABA concentrations predict task-induced deactivation in the default mode network. J Neurosci. 2013;33(47):18566-73. doi: 10.1523/JNEUROSCI.1973-13.2013. PubMed PMID: 24259578. PubMed PMCID: PMC3834059.
  46. Schüler A, Scheiter K, Van Genuchten E. The role of working memory in multimedia instruction: Is working memory working during learning from text and pictures? Educational Psychology Review. 2011;23:389-411. doi: 10.1007/s10648-011-9168-5.
  47. Li Q, Gong D, Tang H, Tian J. The neural coding of tonal working memory load: An functional magnetic resonance imaging study. Front Neurosci. 2022;16:979787. doi: 10.3389/fnins.2022.979787. PubMed PMID: 36330345. PubMed PMCID: PMC9623178.
  48. Squire LR. Memory and brain systems: 1969-2009. J Neurosci. 2009;29(41):12711-6. doi: 10.1523/JNEUROSCI.3575-09.2009. PubMed PMID: 19828780. PubMed PMCID: PMC2791502.
  49. Yoon JH, Grandelis A, Maddock RJ. Dorsolateral Prefrontal Cortex GABA Concentration in Humans Predicts Working Memory Load Processing Capacity. J Neurosci. 2016;36(46):11788-94. doi: 10.1523/JNEUROSCI.1970-16.2016. PubMed PMID: 27852785. PubMed PMCID: PMC5125231.
  50. Kreutzwiser D, Tawfic QA. Expanding Role of NMDA Receptor Antagonists in the Management of Pain. CNS Drugs. 2019;33(4):347-74. doi: 10.1007/s40263-019-00618-2. PubMed PMID: 30826987.
  51. Mei YY, Wu DC, Zhou N. Astrocytic Regulation of Glutamate Transmission in Schizophrenia. Front Psychiatry. 2018;9:544. doi: 10.3389/fpsyt.2018.00544. PubMed PMID: 30459650. PubMed PMCID: PMC6232167.
  52. Bear MF, Abraham WC. Long-term depression in hippocampus. Annu Rev Neurosci. 1996;19:437-62. doi: 10.1146/annurev.ne.19.030196.002253. PubMed PMID: 8833450.