Document Type : Original Research

Authors

1 Ionizing and Non-ionizing Radiation Protection Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

2 Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran

3 Department of Physiology, Fasa University of Medical Sciences, Fasa, Iran

10.31661/jbpe.v0i0.2407-1793

Abstract

Background: Nowadays, the growing use of non-ionizing electromagnetic radiation has raised concerns about its potential health effects.
Objective: In this work, an animal model exposed to Wi-Fi and jammer signals was used to examine the effects of non-ionizing electromagnetic radiation on kidney and liver function.
Material and Methods: In this experimental study, twenty-one male Wistar Albino rats were separated into three groups: Wi-Fi, jammer, and sham groups. The animals were exposed to electromagnetic radiation for two hours per day for two weeks. Blood samples and kidney and liver tissues were collected and analyzed for various biochemical parameters.
Results: The findings of this study showed a mild inflammatory response in both tissues after exposure to the fields. However, no notable or serious alterations were noted in the groups under study. The Wi-Fi and jammer signals had no significant impact on creatinine, albumin, blood urea nitrogen, cholesterol, high-density lipoprotein, triglycerides, albumin/globulin ratio, total bilirubin, direct bilirubin, and alkaline phosphatase levels. However, the jammer group revealed a notable decline in low-density lipoprotein compared to the sham group. Significant differences were observed in the levels of aspartate aminotransferase and alanine aminotransferase between the Wi-Fi and sham groups but not between the other groups. 
Conclusion: This work emphasizes the importance of considering individual organ characteristics in response to electromagnetic radiation exposure. Prolonged or closer exposure to the radiation source may significantly affect the organ function.

Highlights

Manzar Banoo Shojaeifard (Google Scholar)

Keywords

  1. Shahi A, Shahnazar F, Nematolahi S, Dehghan A, Shojaeifard MB. Does exposure to radiation emitted from mobile jammers influence the spatial memory? International Journal of Radiation Research. 2021;19(4):993-1000. doi: 10.52547/ijrr.19.4.28.
  2. Mahmoudi A, Shojaeifard MB, Nematollahii S, Mortazavi SMJ, Mehdizadeh SAR. Effect of Microwave Wi-Fi Radiation at Frequency of.4 GHz on Epileptic Behavior of Rats. J Biomed Phys Eng. 2018;8(2):185-92. PubMed PMID: 29951445. PubMed PMCID: PMC6015645.
  3. Sivani S, Sudarsanam D. Impacts of radio-frequency electromagnetic field (RF-EMF) from cell phone towers and wireless devices on biosystem and ecosystem-a review. Biology and Medicine. 2012;4(4):202-16.
  4. International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 1998;74(4):494-522. PubMed PMID: 9525427.
  5. Adebayo EA, Adeeyo AO, Ogundiran MA, Olabisi O. Bio-physical effects of radiofrequency electromagnetic radiation (RF-EMR) on blood parameters, spermatozoa, liver, kidney and heart of albino rats. Journal of King Saud University-Science. 2019;31(4):813-21. doi: 10.1016/j.jksus.2018.11.007.
  6. Li S, Tan HY, Wang N, Zhang ZJ, Lao L, Wong CW, Feng Y. The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int J Mol Sci. 2015;16(11):26087-124. doi: 10.3390/ijms161125942. PubMed PMID: 26540040. PubMed PMCID: PMC4661801.
  7. Fahmy HM, Mohammed FF. Hepatic injury induced by radio frequency waves emitted from conventional Wi-Fi devices in Wistar rats. Hum Exp Toxicol. 2021;40(1):136-47. doi: 10.1177/0960327120946470. PubMed PMID: 32762465.
  8. Özorak A, Nazıroğlu M, Çelik Ö, Yüksel M, Özçelik D, Özkaya MO, et al. Wi-Fi (2.45 GHz)- and mobile phone (900 and 1800 MHz)-induced risks on oxidative stress and elements in kidney and testis of rats during pregnancy and the development of offspring. Biol Trace Elem Res. 2013;156(1-3):221-9. doi: 10.1007/s12011-013-9836-z. PubMed PMID: 24101576.
  9. Ragy MM. Effect of exposure and withdrawal of 900-MHz-electromagnetic waves on brain, kidney and liver oxidative stress and some biochemical parameters in male rats. Electromagn Biol Med. 2015;34(4):279-84. doi: 10.3109/15368378.2014.906446. PubMed PMID: 24712749.
  10. Jeong YJ, Son Y, Han NK, Choi HD, Pack JK, Kim N, et al. Impact of Long-Term RF-EMF on Oxidative Stress and Neuroinflammation in Aging Brains of C57BL/6 Mice. Int J Mol Sci. 2018;19(7):2103. doi: 10.3390/ijms19072103. PubMed PMID: 30029554. PubMed PMCID: PMC6073444.
  11. Sundaram V, Mohammed S, Cockburn BN, Srinivasan MR, Venkata CRA, Johnson J, et al. Effects of Intermediate Frequency (150 kHz) Electromagnetic Radiation on the Vital Organs of Female Sprague Dawley Rats. Biology (Basel). 2023;12(2):310. doi: 10.3390/biology12020310. PubMed PMID: 36829585. PubMed PMCID: PMC9952889.
  12. Esmaili MH, Masoumi H, Jadidi M, Miladi-Gorji H, Nazari H. The effects of acute mobile phone radiation on the anxiety level of male rats. Middle East J Rehabil Health Stud. 2017;4(2):e43478. doi: 10.5812/mejrh.43478.
  13. Owjfard M, Fard MS. Effects of long-term exposure to radiofrequency radiations emitted by mobile Jammers on reproduction parameters in rats. Asian Pacific Journal of Reproduction. 2017;6(4):164-71. doi: 10.12980/apjr.6.20170404.
  14. Mortazavi SMJ, Parsanezhad M, Kazempour M, Ghahramani P, Mortazavi A, Davari M. Male reproductive health under threat: Short term exposure to radiofrequency radiations emitted by common mobile jammers. J Hum Reprod Sci. 2013;6(2):124-8. doi: 10.4103/0974-1208.117178. PubMed PMID: 24082653. PubMed PMCID: PMC3778601.
  15. Bancroft JD, Gamble M, editors. Theory and practice of histological techniques. Elsevier health sciences; 2008.
  16. Vijayalaxmi, Prihoda TJ. Genetic damage in human cells exposed to non-ionizing radiofrequency fields: a meta-analysis of the data from 88 publications (1990-2011). Mutat Res. 2012;749(1-2):1-16. doi: 10.1016/j.mrgentox.2012.09.007. PubMed PMID: 23022599.
  17. Masoumi A, Karbalaei N, Mortazavi SMJ, Shabani M. Radiofrequency radiation emitted from Wi-Fi (2.4 GHz) causes impaired insulin secretion and increased oxidative stress in rat pancreatic islets. Int J Radiat Biol. 2018;94(9):850-7. doi: 10.1080/09553002.2018.1490039. PubMed PMID: 29913098.
  18. Mortazavi SMJ, Owji SM, Shojaei-Fard MB, Ghader-Panah M, Mortazavi SAR, Tavakoli-Golpayegani A, et al. GSM 900 MHz Microwave Radiation-Induced Alterations of Insulin Level and Histopathological Changes of Liver and Pancreas in Rat. J Biomed Phys Eng. 2016;6(4):235-42. PubMed PMID: 28144593. PubMed PMCID: PMC5219574.
  19. Pound P, Bracken MB. Is animal research sufficiently evidence based to be a cornerstone of biomedical research? 2014;348:g3387. doi: 10.1136/bmj.g3387. PubMed PMID: 24879816.
  20. Langley G, Austin CP, Balapure AK, Birnbaum LS, Bucher JR, Fentem J, et al. Lessons from Toxicology: Developing a 21st-Century Paradigm for Medical Research. Environ Health Perspect. 2015;123(11):A268-72. doi: 10.1289/ehp.1510345. PubMed PMID: 26523530. PubMed PMCID: PMC4629751.
  21. Akdag MZ, Dasdag S, Canturk F, Karabulut D, Caner Y, Adalier N. Does prolonged radiofrequency radiation emitted from Wi-Fi devices induce DNA damage in various tissues of rats? J Chem Neuroanat. 2016;75(Pt B):116-22. doi: 10.1016/j.jchemneu.2016.01.003. PubMed PMID: 26775760.
  22. Zaias J, Mineau M, Cray C, Yoon D, Altman NH. Reference values for serum proteins of common laboratory rodent strains. J Am Assoc Lab Anim Sci. 2009;48(4):387-90. PubMed PMID: 19653947. PubMed PMCID: PMC2715929.
  23. Borzoueisileh S, Shabestani Monfared A, Ghorbani H, Mortazavi SMJ, Zabihi E, Pouramir M, et al. Combined Effects of Radiofrequency Electromagnetic Fields and X-Ray in Renal Tissue and Function. Res Rep Urol. 2020;12:527-32. doi: 10.2147/RRU.S257365. PubMed PMID: 33150143. PubMed PMCID: PMC7605663.
  24. Park J, Kim HJ, Kim J, Choi YB, Shin YS, Lee MJ. Predictive value of serum albumin-to-globulin ratio for incident chronic kidney disease: A 12-year community-based prospective study. PLoS One. 2020;15(9):e0238421. doi: 10.1371/journal.pone.0238421. PubMed PMID: 32877465. PubMed PMCID: PMC7467286.
  25. Stender RN, Engler WJ, Braun TM, Hankenson FC. Establishment of blood analyte intervals for laboratory mice and rats by use of a portable clinical analyzer. J Am Assoc Lab Anim Sci. 2007;46(3):47-52. PubMed PMID: 17487953.
  26. Fahmy H, Mohammed F, Abdelrahman R, Abu Elfetoh M, Mohammed Y. Effect of radiofrequency waves emitted from conventional WIFI devices on some oxidative stress parameters in rat kidney. J Drug Metab Toxicol. 2015;6(195):2.
  27. Aweda MA, Gbenebitse S, Meindinyo RO. Microwave radiation exposures affect the ldl, hdl, tcl and trg status in rats. Int J Phys Sci. 2010;5(7):1015-22.
  28. Shekoohi Shooli F, Mortazavi SAR, Jarideh S, Nematollahii S, Yousefi F, Haghani M, et al. Short-Term Exposure to Electromagnetic Fields Generated by Mobile Phone Jammers Decreases the Fasting Blood Sugar in Adult Male Rats. J Biomed Phys Eng. 2016;6(1):27-32. PubMed PMID: 27026952. PubMed PMCID: PMC4795326.
  29. Salazar JH. Overview of urea and creatinine. Laboratory Medicine. 2014;45(1):e19-20. doi: 10.1309/LM920SBNZPJRJGUT.
  30. Edwards KD, Whyte HM. Plasma creatinine level and creatinine clearance as tests of renal function. Australas Ann Med. 1959;8:218-24. doi: 10.1111/imj.1959.8.3.218. PubMed PMID: 13819423.
  31. De Castro BB, Colugnati FA, Cenedeze MA, Suassuna PG, Pinheiro HS. Standardization of renal function evaluation in Wistar rats (Rattus norvegicus) from the Federal University of Juiz de Fora’s colony. J Bras Nefrol. 2014;36(2):139-49. doi: 10.5935/0101-2800.20140023. PubMed PMID: 25055353.
  32. Hasan I, Amin T, Alam MR, Islam MR. Hematobiochemical and histopathological alterations of kidney and testis due to exposure of 4G cell phone radiation in mice. Saudi J Biol Sci. 2021;28(5):2933-42. doi: 10.1016/j.sjbs.2021.02.028. PubMed PMID: 34012329. PubMed PMCID: PMC8117002.
  33. Ozbek E. Induction of oxidative stress in kidney. Int J Nephrol. 2012;2012:465897. doi: 10.1155/2012/465897. PubMed PMID: 22577546. PubMed PMCID: PMC3345218.
  34. Alamri ZZ. The role of liver in metabolism: an updated review with physiological emphasis. Int J Basic Clin Pharmacol. 2018;7(11):2271-6. doi: 10.18203/2319-2003.ijbcp20184211.
  35. Ozougwu JC. Physiology of the liver. International Journal of Research in Pharmacy and Biosciences. 2017;4(8):13-24.
  36. Kaplowitz N. Drug-induced liver injury. Clinical Infectious Diseases. 2004;38(Supplement_2):S44-8. doi: 10.1086/381446.
  37. Kumar JB, Goud BKM, Kumar A. Liver Function Tests: Biochemical Overview for Clinical Correlation. Indian J Med Biochem. 2021;25(1):31-37. doi: 10.5005/jp-journals-10054-0171.
  38. Lee TH, Kim WR, Poterucha JJ. Evaluation of elevated liver enzymes. Clin Liver Dis. 2012;16(2):183-98. doi: 10.1016/j.cld.2012.03.006. PubMed PMID: 22541694. PubMed PMCID: PMC7110573.
  39. Huang XJ, Choi YK, Im HS, Yarimaga O, Yoon E, Kim HS. Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. 2006;6(7):756-82. doi: 10.3390/s6070756.
  40. Chauhan P, Verma HN, Sisodia R, Kesari KK. Microwave radiation (2.45 GHz)-induced oxidative stress: Whole-body exposure effect on histopathology of Wistar rats. Electromagn Biol Med. 2017;36(1):20-30. doi: 10.3109/15368378.2016.1144063. PubMed PMID: 27362544.