Document Type : Original Research

Authors

1 Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

2 Research Center for Biomedical Technologies and Robotics (RCBTR), Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran, University of Medical Science (TUMS), Tehran, Iran

3 Laboratory of Biological Psychology, Department of Brain and Cognition, Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven 3714, Belgium

4 Department of Basic Science, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran

5 Neural Engineering and Rehabilitation Research Center, Tehran, Iran

6 Department of Physical Medicine and Rehabilitation, Northwestern University, USA

10.31661/jbpe.v0i0.2410-1840

Abstract

Background: Hemiplegic Cerebral Palsy (HCP) causes significant motor impairments, due to disrupted Functional Connectivity (FC) between brain regions. Low-Frequency Repetitive Transcranial Magnetic Stimulation (LF-rTMS) has emerged as a potential therapeutic technique for restoring FC and motor recovery.
Objective: This study aimed to evaluate the effects of LF-rTMS on FC in children with spastic HCP.
Material and Methods: This Randomized Controlled Trial (RCT) included ten children with spastic HCP, aged 4 to 13 years. Six children received 12 sessions of LF-rTMS, while four in the control group underwent 12 sessions of sham stimulation. Functional Magnetic Resonance Imaging (fMRI) was used to assess intra- and interhemispheric FC during passive knee movements of the affected limb.
Results: LF-rTMS induced region-specific reductions in interhemispheric FC, particularly between the contralesional ventral premotor area (cPMv) and both the ipsilesional primary somatosensory cortex (iS1) (for effect size: T=-2.60, P-value=0.048, FDR-corrected) and the ipsilesional primary motor area (iM1) (T=-2.45, P-value=0.048, FDR-corrected). These findings suggest modulation of interhemispheric motor-sensory pathways. Concurrently, localized increases in FC were observed in contralesional regions, and FC decreased between the ipsilesional Supplementary Motor Area (SMA) and the secondary somatosensory cortex (S2) (T=-3.11, P-value=0.041, FDR-corrected). 
Conclusion: LF-rTMS may modulate FC and hold promise as a rehabilitative intervention for improving motor function in children with HCP.

Highlights

Azadeh Ghalyanchi-Langeroudi (PubMed)

Mohammad-Mehdi Mirbagheri (Google Scholar)

Keywords

  1. Smania N, Bonetti P, Gandolfi M, Cosentino A, Waldner A, Hesse S, et al. Improved gait after repetitive locomotor training in children with cerebral palsy. Am J Phys Med Rehabil. 2011;90(2):137-49. doi: 10.1097/PHM.0b013e318201741e. PubMed PMID: 21217461.
  2. Uvebrant P. Hemiplegic cerebral palsy. Aetiology and outcome. Acta Paediatr Scand Suppl. 1988;345:1-100. doi: 10.1111/j.1651-2227.1988.tb14939.x. PubMed PMID: 3201989.
  3. Hagberg G, Hagberg G, Olow I. The changing panorama of cerebral palsy in Sweden 1954-1970. II. Analysis of the various syndromes. Acta Paediatr Scand. 1975;64(2):193-200. doi: 10.1111/j.1651-2227.1975.tb03821.x. PubMed PMID: 1130175.
  4. Jaspers E, Desloovere K, Bruyninckx H, Molenaers G, Klingels K, Feys H. Review of quantitative measurements of upper limb movements in hemiplegic cerebral palsy. Gait Posture. 2009;30(4):395-404. doi: 10.1016/j.gaitpost.2009.07.110. PubMed PMID: 19679479.
  5. Babik I. From hemispheric asymmetry through sensorimotor experiences to cognitive outcomes in children with cerebral palsy. 2022;14(2):345. doi: 10.3390/sym14020345.
  6. Dodd KC, Nair VA, Prabhakaran V. Role of the Contralesional vs. Ipsilesional Hemisphere in Stroke Recovery. Front Hum Neurosci. 2017;11:469. doi: 10.3389/fnhum.2017.00469. PubMed PMID: 28983244. PubMed PMCID: PMC5613154.
  7. Berweck S, Walther M, Brodbeck V, Wagner N, Koerte I, Henschel V, et al. Abnormal motor cortex excitability in congenital stroke. Pediatr Res. 2008;63(1):84-8. doi: 10.1203/PDR.0b013e31815b88f1. PubMed PMID: 18043504.
  8. Chen CY, Rich TL, Cassidy JM, Gillick BT. Corticospinal Excitability in Children with Congenital Hemiparesis. Brain Sci. 2016;6(4):49. doi: 10.3390/brainsci6040049. PubMed PMID: 27775599. PubMed PMCID: PMC5187563.
  9. Wu Q, Peng T, Liu L, Zeng P, Xu Y, Yang X, et al. The Effect of Constraint-Induced Movement Therapy Combined With Repetitive Transcranial Magnetic Stimulation on Hand Function in Preschool Children With Unilateral Cerebral Palsy: A Randomized Controlled Preliminary Study. Front Behav Neurosci. 2022;16:876567. doi: 10.3389/fnbeh.2022.876567. PubMed PMID: 35449560. PubMed PMCID: PMC9017424.
  10. Westlake KP, Nagarajan SS. Functional connectivity in relation to motor performance and recovery after stroke. Front Syst Neurosci. 2011;5:8. doi: 10.3389/fnsys.2011.00008. PubMed PMID: 21441991. PubMed PMCID: PMC3060711.
  11. Araneda R, Dricot L, Ebner-Karestinos D, Paradis J, Gordon AM, Friel KM, Bleyenheuft Y. Brain activation changes following motor training in children with unilateral cerebral palsy: An fMRI study. Ann Phys Rehabil Med. 2021;64(3):101502. doi: 10.1016/j.rehab.2021.101502. PubMed PMID: 33647530.
  12. Kirton A, Metzler MJ, Craig BT, Hilderley A, Dunbar M, Giuffre A, et al. Perinatal stroke: mapping and modulating developmental plasticity. Nat Rev Neurol. 2021;17(7):415-32. doi: 10.1038/s41582-021-00503-x. PubMed PMID: 34127850.
  13. Gillick BT, Gordon AM, Feyma T, Krach LE, Carmel J, Rich TL, et al. Non-Invasive Brain Stimulation in Children With Unilateral Cerebral Palsy: A Protocol and Risk Mitigation Guide. Front Pediatr. 2018;6:56. doi: 10.3389/fped.2018.00056. PubMed PMID: 29616203. PubMed PMCID: PMC5864860.
  14. Gillick BT, Krach LE, Feyma T, Rich TL, Moberg K, Menk J, et al. Safety of primed repetitive transcranial magnetic stimulation and modified constraint-induced movement therapy in a randomized controlled trial in pediatric hemiparesis. Arch Phys Med Rehabil. 2015;96(4 Suppl):S104-13. doi: 10.1016/j.apmr.2014.09.012. PubMed PMID: 25283350. PubMed PMCID: PMC4380609.
  15. Nemanich ST, Lench DH, Sutter EN, Kowalski JL, Francis SM, Meekins GD, et al. Safety and feasibility of transcranial direct current stimulation stratified by corticospinal organization in children with hemiparesis. Eur J Paediatr Neurol. 2023;43:27-35. doi: 10.1016/j.ejpn.2023.01.013. PubMed PMID: 36878110. PubMed PMCID: PMC10117060.
  16. He W, Huang Y, He L, Liu L, Zeng P, Qiu H, et al. Safety and effects of transcranial direct current stimulation on hand function in preschool children with hemiplegic cerebral palsy: A pilot study. Front Behav Neurosci. 2022;16:925122. doi: 10.3389/fnbeh.2022.925122. PubMed PMID: 36160682. PubMed PMCID: PMC9500382.
  17. Boddington LJ, Reynolds JNJ. Targeting interhemispheric inhibition with neuromodulation to enhance stroke rehabilitation. Brain Stimul. 2017;10(2):214-22. doi: 10.1016/j.brs.2017.01.006. PubMed PMID: 28117178.
  18. Gupta M, Bhatia D. Evaluating the Effect of Repetitive Transcranial Magnetic Stimulation in Cerebral Palsy Children by Employing Electroencephalogram Signals. Ann Indian Acad Neurol. 2018;21(4):280-4. doi: 10.4103/aian.AIAN_413_17. PubMed PMID: 30532357. PubMed PMCID: PMC6238553.
  19. Parvin S, Shahrokhi A, Tafakhori A, Irani A, Rasteh M, Mirbagheri MM. Therapeutic Effects of repetitive Transcranial Magnetic Stimulation on Corticospinal Tract Activities and Neuromuscular Properties in Children with Cerebral Palsy. Annu Int Conf IEEE Eng Med Biol Soc. 2018;2018:2218-21. doi: 10.1109/EMBC.2018.8512805. PubMed PMID: 30440846.
  20. Rajak BL, Gupta M, Bhatia D, Mukherjee A. Increasing Number of Therapy Sessions of Repetitive Transcranial Magnetic Stimulation Improves Motor Development by Reducing Muscle Spasticity in Cerebral Palsy Children. Ann Indian Acad Neurol. 2019;22(3):302-7. doi: 10.4103/aian.AIAN_102_18. PubMed PMID: 31359942. PubMed PMCID: PMC6613416.
  21. Du J, Yang F, Hu J, Hu J, Xu Q, Cong N, et al. Effects of high- and low-frequency repetitive transcranial magnetic stimulation on motor recovery in early stroke patients: Evidence from a randomized controlled trial with clinical, neurophysiological and functional imaging assessments. Neuroimage Clin. 2019;21:101620. doi: 10.1016/j.nicl.2018.101620. PubMed PMID: 30527907. PubMed PMCID: PMC6411653.
  22. Takeuchi N, Izumi S. Maladaptive plasticity for motor recovery after stroke: mechanisms and approaches. Neural Plast. 2012;2012:359728. doi: 10.1155/2012/359728. PubMed PMID: 22792492. PubMed PMCID: PMC3391905.
  23. Grefkes C, Nowak DA, Wang LE, Dafotakis M, Eickhoff SB, Fink GR. Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. 2010;50(1):233-42. doi: 10.1016/j.neuroimage.2009.12.029. PubMed PMID: 20005962. PubMed PMCID: PMC8020334.
  24. Ueda R, Yamada N, Abo M, Ruwan PW, Senoo A. MRI evaluation of motor function recovery by rTMS and intensive occupational therapy and changes in the activity of motor cortex. Int J Neurosci. 2020;130(3):309-17. doi: 10.1080/00207454.2019.1680553. PubMed PMID: 31607202.
  25. Weinstein M, Green D, Rudisch J, Zielinski IM, Benthem-Muñiz M, Jongsma MLA, et al. Understanding the relationship between brain and upper limb function in children with unilateral motor impairments: A multimodal approach. Eur J Paediatr Neurol. 2018;22(1):143-54. doi: 10.1016/j.ejpn.2017.09.012. PubMed PMID: 29111113.
  26. Jin JN, Wang X, Li Y, Jin F, Liu ZP, Yin T. The Effects of rTMS Combined with Motor Training on Functional Connectivity in Alpha Frequency Band. Front Behav Neurosci. 2017;11:234. doi: 10.3389/fnbeh.2017.00234. PubMed PMID: 29238296. PubMed PMCID: PMC5712595.
  27. Azizi S, Irani A, Shahrokhi A, Rahimian E, Mirbagheri MM. Contribution of altered corticospinal microstructure to gait impairment in children with cerebral palsy. Clin Neurophysiol. 2021;132(9):2211-21. doi: 10.1016/j.clinph.2021.06.016. PubMed PMID: 34311204.
  28. Marzbani H, Shahrokhi A, Irani A, Mehdinezhad M, Kohanpour M, Mirbagheri MM. The Effects of Low Frequency Repetitive Transcranial Magnetic Stimulation on White Matter Structural Connectivity in Children with Cerebral Palsy. Annu Int Conf IEEE Eng Med Biol Soc. 2018;2018:2491-4. doi: 10.1109/EMBC.2018.8512866. PubMed PMID: 30440913.
  29. Duffell LD, Brown GL, Mirbagheri MM. Facilitatory effects of anti-spastic medication on robotic locomotor training in people with chronic incomplete spinal cord injury. J Neuroeng Rehabil. 2015;12:29. doi: 10.1186/s12984-015-0018-4. PubMed PMID: 25881322. PubMed PMCID: PMC4376342.
  30. Mirbagheri MM, Kindig MW, Niu X. Effects of robotic-locomotor training on stretch reflex function and muscular properties in individuals with spinal cord injury. Clin Neurophysiol. 2015;126(5):997-1006. doi: 10.1016/j.clinph.2014.09.010. PubMed PMID: 25449559. PubMed PMCID: PMC4369462.
  31. Schaechter JD, Fricker ZP, Perdue KL, Helmer KG, Vangel MG, Greve DN, Makris N. Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients. Hum Brain Mapp. 2009;30(11):3461-74. doi: 10.1002/hbm.20770. PubMed PMID: 19370766. PubMed PMCID: PMC2780023.
  32. Nieto-Castanon A. Handbook of functional connectivity magnetic resonance imaging methods in CONN. Hilbert Press; 2020.
  33. Nieto-Castanon A, Whitfield-Gabrieli S. CONN functional connectivity toolbox (RRID: SCR_009550), Version 21. Hilbert Press; 2021.
  34. Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2(3):125-41. doi: 10.1089/brain.2012.0073. PubMed PMID: 22642651.
  35. Bradnam LV, Stinear CM, Barber PA, Byblow WD. Contralesional hemisphere control of the proximal paretic upper limb following stroke. Cereb Cortex. 2012;22(11):2662-71. doi: 10.1093/cercor/bhr344. PubMed PMID: 22139791. PubMed PMCID: PMC4705341.
  36. Galimberti A, Tik M, Pellegrino G, Schuler AL. Effectiveness of rTMS and tDCS treatment for chronic TBI symptoms: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2024;128:110863. doi: 10.1016/j.pnpbp.2023.110863. PubMed PMID: 37709126.
  37. Williams JA, Pascual-Leone A, Fregni F. Interhemispheric modulation induced by cortical stimulation and motor training. Phys Ther. 2010;90(3):398-410. doi: 10.2522/ptj.20090075. PubMed PMID: 20110339.
  38. Tung YC, Lai CH, Liao CD, Huang SW, Liou TH, Chen HC. Repetitive transcranial magnetic stimulation of lower limb motor function in patients with stroke: a systematic review and meta-analysis of randomized controlled trials. Clin Rehabil. 2019;33(7):1102-12. doi: 10.1177/0269215519835889. PubMed PMID: 30864462.
  39. Zhang G, Ruan X, Li Y, Li E, Gao C, Liu Y, et al. Intermittent Theta-Burst Stimulation Reverses the After-Effects of Contralateral Virtual Lesion on the Suprahyoid Muscle Cortex: Evidence From Dynamic Functional Connectivity Analysis. Front Neurosci. 2019;13:309. doi: 10.3389/fnins.2019.00309. PubMed PMID: 31105511. PubMed PMCID: PMC6491879.
  40. Brihmat N, Tarri M, Gasq D, Marque P, Castel-Lacanal E, Loubinoux I. Cross-Modal Functional Connectivity of the Premotor Cortex Reflects Residual Motor Output After Stroke. Brain Connect. 2020;10(5):236-49. doi: 10.1089/brain.2020.0750. PubMed PMID: 32414294.
  41. Koch PJ, Hummel FC. Toward precision medicine: tailoring interventional strategies based on noninvasive brain stimulation for motor recovery after stroke. Curr Opin Neurol. 2017;30(4):388-97. doi: 10.1097/WCO.0000000000000462. PubMed PMID: 28548988.
  42. Boyd LA, Hayward KS, Ward NS, Stinear CM, Rosso C, Fisher RJ, et al. Biomarkers of stroke recovery: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int J Stroke. 2017;12(5):480-93. doi: 10.1177/1747493017714176. PubMed PMID: 28697711. PubMed PMCID: PMC6791523.
  43. Cassidy JM, Mark JI, Cramer SC. Functional connectivity drives stroke recovery: shifting the paradigm from correlation to causation. 2022;145(4):1211-28. doi: 10.1093/brain/awab469. PubMed PMID: 34932786. PubMed PMCID: PMC9630718.
  44. Kurz MJ, Heinrichs-Graham E, Becker KM, Wilson TW. The magnitude of the somatosensory cortical activity is related to the mobility and strength impairments seen in children with cerebral palsy. J Neurophysiol. 2015;113(9):3143-50. doi: 10.1152/jn.00602.2014. PubMed PMID: 25717160. PubMed PMCID: PMC4432676.
  45. Ghaderi S, Mohammadi M, Sayehmiri F, Mohammadi S, Tavasol A, Rezaei M, Ghalyanchi-Langeroudi A. Machine Learning Approaches to Identify Affected Brain Regions in Movement Disorders Using MRI Data: A Systematic Review and Diagnostic Meta-analysis. J Magn Reson Imaging. 2024;60(6):2518-46. doi: 10.1002/jmri.29364. PubMed PMID: 38538062.
  46. Thickbroom GW, Byrnes ML, Archer SA, Nagarajan L, Mastaglia FL. Differences in sensory and motor cortical organization following brain injury early in life. Ann Neurol. 2001;49(3):320-7. PubMed PMID: 11261506.
  47. Han X, Zhu Z, Luan J, Lv P, Xin X, Zhang X, et al. Effects of repetitive transcranial magnetic stimulation and their underlying neural mechanisms evaluated with magnetic resonance imaging-based brain connectivity network analyses. Eur J Radiol Open. 2023;10:100495. doi: 10.1016/j.ejro.2023.100495. PubMed PMID: 37396489. PubMed PMCID: PMC10311181.