Document Type : Original Research
Author
Department of Physics, College of Science, Al-Muthanna University, Iraq
Abstract
Background: Cross-coherence is used to evaluate the correlation between two sources of signals and to evaluate the power transfer between input and output of two linear sources. Visual evoked potential (VEP) is used to study the visual pathway of patients according to the ISCEV standard.
Objective: The cross-coherence analysis is used to examine the interconnections between channels across two age groups mature and young.
Material and Methods: This experimental and analysis study implements a statistical method based on coherence analysis horizontally, vertically, and diagonally across the brain hemisphere. It investigates and discriminates the VEP responses related to age in two groups, matured and young.
Results: The coherence results compared in both the time and frequency domains for the two age groups. In the young age group, there is greater coherence between the occipital lobes compared to the frontal lobes in horizontal coherence. The diagonal coherence in the young age group was less than 0.4, whereas it exceeded 0.4 and 0.5 in the mature age group for the time and frequency domains, respectively.
Conclusion: The frequency coherence shows the spectrum of an alpha wave of frequency 15 Hz in the matured group. The vertical coherence of matured age group shows an extra peak in the range of late Alpha wave at 25 Hz compared to that in the young age group. The diagonal coherence shows the frequency peak of the Alpha wave at 15 Hz in the matured age group. While the young group shows the late Alpha wave at around 25 Hz.
Highlights
Ahmed Fadhil Almurshedi (Google Scholar)
Keywords
- Snyder AC, Issar D, Smith MA. What does scalp electroencephalogram coherence tell us about long-range cortical networks? Eur J Neurosci. 2018;48(7):2466-81. doi: 10.1111/ejn.13840. PubMed PMID: 29363843. PubMed PMCID: PMC6497452.
- Brenner R. Investigations in Multiple Sclerosis. In: Schapira AHV, Byrne E, DiMauro S, Frackowiak RSJ, Johnson RT, Mizuno Y, et al., editors. Neurology and Clinical Neuroscience. Philadelphia: Mosby; 2007. p. 1031-44.
- Poulos M, Papavlasopoulos S, Alexandris N, Vlachos E. Comparison between auto-cross-correlation coefficients and coherence methods applied to the EEG for diagnostic purposes. Med Sci Monit. 2004;10(10):MT99-108. PubMed PMID: 15448608.
- Meng F, Tong KY, Chan ST, Wong WW, Lui KH, Tang KW, et al. Study on connectivity between coherent central rhythm and electromyographic activities. J Neural Eng. 2008;5(3):324-32. doi: 10.1088/1741-2560/5/3/005. PubMed PMID: 18756033.
- Popivanov D, Dushanova J. Non-linear EEG dynamic changes and their probable relation to voluntary movement organization. 1999;10(7):1397-401. doi: 10.1097/00001756-199905140-00003. PubMed PMID: 10380953.
- Kristeva R, Patino L, Omlor W. Beta-range cortical motor spectral power and corticomuscular coherence as a mechanism for effective corticospinal interaction during steady-state motor output. Neuroimage. 2007;36(3):785-92. doi: 10.1016/j.neuroimage.2007.03.025. PubMed PMID: 17493837.
- Hashimoto Y, Ushiba J, Kimura A, Liu M, Tomita Y. Correlation between EEG-EMG coherence during isometric contraction and its imaginary execution. Acta Neurobiol Exp (Wars). 2010;70(1):76-85. doi: 10.55782/ane-2010-1776. PubMed PMID: 20407489.
- Pohja M, Salenius S, Hari R. Reproducibility of cortex-muscle coherence. Neuroimage. 2005;26(3):764-70. doi: 10.1016/j.neuroimage.2005.02.031. PubMed PMID: 15955485.
- Chen CC, Hsieh JC, Wu YZ, Lee PL, Chen SS, Niddam DM, et al. Mutual-information-based approach for neural connectivity during self-paced finger lifting task. Hum Brain Mapp. 2008;29(3):265-80. doi: 10.1002/hbm.20386. PubMed PMID: 17394211. PubMed PMCID: PMC6871222.
- Ioannides AA, Mitsis GD. Do we need to consider non-linear information flow in corticomuscular interaction? Clin Neurophysiol. 2010;121(3):272-3. doi: 10.1016/j.clinph.2009.11.005. PubMed PMID: 20005772.
- Kim B, Kim L, Kim YH, Yoo SK. Cross-association analysis of EEG and EMG signals according to movement intention state. Cognitive Systems Research. 2017;44:1-9. doi: 10.1016/j.cogsys.2017.02.001.
- Cimenser A, Purdon PL, Pierce ET, Walsh JL, Salazar-Gomez AF, Harrell PG, et al. Tracking brain states under general anesthesia by using global coherence analysis. Proc Natl Acad Sci U S A. 2011;108(21):8832-7. doi: 10.1073/pnas.1017041108. PubMed PMID: 21555565. PubMed PMCID: PMC3102391.
- Yindeedej V, Uda T, Nishijima S, Inoue T, Kuki I, Fukuoka M, et al. Changes in interhemispheric coherence after total corpus callosotomy: a scalp EEG study in children with non-lesional generalized epilepsy. Childs Nerv Syst. 2024;40(8):2483-9. doi: 10.1007/s00381-024-06435-3. PubMed PMID: 38687362.
- Yindeedej V, Uda T, Nishijima S, Inoue T, Kuki I, Fukuoka M, et al. Preoperative interhemispheric coherence as a potential predictive marker for seizure outcome after total corpus callosotomy in nonlesional generalized epilepsy: a scalp EEG study. J Neurosurg Pediatr. 2024;35(2):174-80. doi: 10.3171/2024.7.PEDS24246. PubMed PMID: 39454219.
- Criscuolo S, Cataldo A, De Benedetto E, Masciullo A, Pesola M, Schiavoni R. Entropy and Coherence Features in EEG-Based Classification for Alzheimer’s Disease Detection. In IEEE International Instrumentation and Measurement Technology Conference (I2MTC); Glasgow, United Kingdom: IEEE, 2024. p. 1-6.
- Hwang S, Shin Y, Sunwoo JS, Son H, Lee SB, Chu K, et al. Increased coherence predicts medical refractoriness in patients with temporal lobe epilepsy on monotherapy. Sci Rep. 2024;14(1):20530. doi: 10.1038/s41598-024-71583-0. PubMed PMID: 39227730. PubMed PMCID: PMC11372158.
- Almurshedi AF, Ismail AK, Sulaiman N. Feature extraction of visual evoked potentials using wavelet transform and singular value decomposition. Iran J Med Phys. 2018;15:206-14. doi: 10.22038/ijmp.2018.28583.1311.
- Almurshedi AF. Measure projection analysis of VEP localization neuron generator. International Conference on BioSignal Analysis, Processing and Systems (ICBAPS); Kuala Lumpur, Malaysia: IEEE; 2015. p. 108-11.
- Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Mizota A, Tormene AP. ISCEV standard for clinical visual evoked potentials: (2016 update). Doc Ophthalmol. 2016;133(1):1-9. doi: 10.1007/s10633-016-9553-y. PubMed PMID: 27443562.
- Thompson DA, Mikó-Baráth E, Hardy SE, Jandó G, Shaw M, Hamilton R. ISCEV standard pattern reversal VEP development: paediatric reference limits from 649 healthy subjects. Doc Ophthalmol. 2023;147(3):147-64. doi: 10.1007/s10633-023-09952-9. PubMed PMID: 37938426. PubMed PMCID: PMC10638119.
- Almurshedi AF, Ismail AK. Cross coherence independent component analysis in resting and action states EEG discrimination. Journal of Physics: Conference Series 2014;546(1):012019. doi: 10.1088/1742-6596/546/1/012019.
- Weiss S, Mueller HM. The contribution of EEG coherence to the investigation of language. Brain Lang. 2003;85(2):325-43. doi: 10.1016/s0093-934x(03)00067-1. PubMed PMID: 12735948.
- Shaw JC. An introduction to the coherence function and its use in EEG signal analysis. J Med Eng Technol. 1981;5(6):279-88. doi: 10.3109/03091908109009362. PubMed PMID: 7328624.
- Hamilton R, Bach M, Heinrich SP, Hoffmann MB, Odom JV, McCulloch DL, Thompson DA. VEP estimation of visual acuity: a systematic review. Doc Ophthalmol. 2021;142(1):25-74. doi: 10.1007/s10633-020-09770-3. PubMed PMID: 32488810. PubMed PMCID: PMC7907051.
- Vysata O, Kukal J, Prochazka A, Pazdera L, Simko J, Valis M. Age-related changes in EEG coherence. Neurol Neurochir Pol. 2014;48(1):35-8. doi: 10.1016/j.pjnns.2013.09.001. PubMed PMID: 24636768.