Document Type : Original Research

Authors

1 Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

2 Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

3 Physics Unit, Department of Radio-oncology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

4 Department of Radiology, School of Paramedical Science, Shiraz University of Medical Sciences, Shiraz, Iran

5 Neuroscience Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran

6 Department of Biomedical Engineering, Texas A&M University, 600 Discovery Drive, College Station, TX, 77840-3006, USA

7 Center for Remote Health Technologies & Systems, Texas A&M Engineering Experiment Station, 600 Discovery Drive, College Station, TX, 77840-3006, USA

10.31661/jbpe.v0i0.2502-1887

Abstract

Background: Lung cancer is a leading cause of cancer-related mortality worldwide, underscoring the need for the development of more effective treatment strategies. Radiotherapy (RT), particularly intensity-modulated radiation therapy (IMRT), has enhanced tumor targeting while minimizing damage to healthy tissues. Nevertheless, radioresistance and challenges posed by the tumor microenvironment limit its efficacy.
Objective: Selenium-curcumin-polyethylene glycol 600 nanoparticles (Se-Cur-PEG NPs) analyzed as radiosensitizers in IMRT for lung cancer treatment.
Material and Methods: In this experimental study, Se-Cur-PEG NPs were synthesized and characterized for their potential as radiosensitizers.
Results: The in vitro toxicity of Se-Cur-PEG NPs against A549 lung cancer cells was evaluated using MTT assays, demonstrating a dose-dependent reduction in cell viability. The combination of Se-Cur-PEG NPs (50 µg mL-1) with IMRT (4 Gy) resulted in a significant enhancement in cell death compared to either treatment alone, indicating a strong synergistic effect (CI=1.21) and a notable sensitizer enhancement ratio (SER=2.5). Intracellular ROS generation analysis confirmed that Se-Cur-PEG NPs amplified IMRT-induced oxidative stress, contributing to increased cancer cell toxicity. 
Conclusion: These findings suggest that Se-Cur-PEG NPs hold promise as effective radiosensitizers, potentially improving lung cancer RT outcomes.

Keywords

  1. Nasim F, Sabath BF, Eapen GA. Lung Cancer. Med Clin North Am. 2019;103(3):463-73. doi: 10.1016/j.mcna.2018.12.006. PubMed PMID: 30955514.
  2. Król K, Mazur A, Stachyra-Strawa P, Grzybowska-Szatkowska L. Non-Small Cell Lung Cancer Treatment with Molecularly Targeted Therapy and Concurrent Radiotherapy-A Review. Int J Mol Sci. 2023;24(6):5858. doi: 10.3390/ijms24065858. PubMed PMID: 36982933. PubMed PMCID: PMC10052930.
  3. Jumeau R, Vilotte F, Durham AD, Ozsahin EM. Current landscape of palliative radiotherapy for non-small-cell lung cancer. Transl Lung Cancer Res. 2019;8(Suppl 2):S192-201. doi: 10.21037/tlcr.2019.08.10. PubMed PMID: 31673524. PubMed PMCID: PMC6795576.
  4. Perota G, Faghani-Eskandarkolaei P, Zahraie N, Zare MH, Sattarahmady N. A Study of Sonodynamic Therapy of Melanoma C540 Cells in Vitro by Titania/Gold Nanoparticles. J Biomed Phys Eng. 2024;14(1):43-54. doi: 10.31661/jbpe.v0i0.2310-1674. PubMed PMID: 38357599. PubMed PMCID: PMC10862114.
  5. Kayani Z, Heli H, Dehdari Vais R, Haghighi H, Ajdari M, Sattarahmady N. Synchronized Chemotherapy/Photothermal Therapy/Sonodynamic Therapy of Human Triple-Negative and Estrogen Receptor-Positive Breast Cancer Cells Using a Doxorubicin-Gold Nanoclusters-Albumin Nanobioconjugate. Ultrasound Med Biol. 2024;50(6):869-81. doi: 10.1016/j.ultrasmedbio.2024.02.012. PubMed PMID: 38538442.
  6. Kirsch DG, Diehn M, Kesarwala AH, Maity A, Morgan MA, Schwarz JK, et al. The Future of Radiobiology. J Natl Cancer Inst. 20181;110(4):329-40. doi: 10.1093/jnci/djx231. PubMed PMID: 29126306. PubMed PMCID: PMC5928778.
  7. Shirai K, Aoki S, Endo M, Takahashi Y, Fukuda Y, Akahane K, et al. Recent developments in the field of radiotherapy for the management of lung cancer. Jpn J Radiol. 2025;43(2):186-99. doi: 10.1007/s11604-024-01663-8. PubMed PMID: 39316285. PubMed PMCID: PMC11790782.
  8. Taylor A, Powell ME. Intensity-modulated radiotherapy--what is it? Cancer Imaging. 2004;4(2):68-73. doi: 10.1102/1470-7330.2004.0003. PubMed PMID: 18250011. PubMed PMCID: PMC1434586.
  9. Sura S, Gupta V, Yorke E, Jackson A, Amols H, Rosenzweig KE. Intensity-modulated radiation therapy (IMRT) for inoperable non-small cell lung cancer: the Memorial Sloan-Kettering Cancer Center (MSKCC) experience. Radiother Oncol. 2008;87(1):17-23. doi: 10.1016/j.radonc.2008.02.005. PubMed PMID: 18343515. PubMed PMCID: PMC2722446.
  10. Bensenane R, Helfre S, Cao K, Carton M, Champion L, Girard N, et al. Optimizing lung cancer radiation therapy: A systematic review of multifactorial risk assessment for radiation-induced lung toxicity. Cancer Treat Rev. 2024;124:102684. doi: 10.1016/j.ctrv.2024.102684. PubMed PMID: 38278078.
  11. Chen G, Wu K, Li H, Xia D, He T. Role of hypoxia in the tumor microenvironment and targeted therapy. Front Oncol. 2022;12:961637. doi: 10.3389/fonc.2022.961637. PubMed PMID: 36212414. PubMed PMCID: PMC9545774.
  12. Heli H, Rahi A. Synthesis and Applications of Nanoflowers. Recent Pat Nanotechnol. 2016;10(2):86-115. doi: 10.2174/1872210510999160517102102. PubMed PMID: 27502388.
  13. Ajdari M, Ranjbar A, Karimian K, Karimi M, Heli H, Sattarahmady N. Characterization and Evaluation of Nano-niosomes Encapsulating Docetaxel against Human Breast, Pancreatic, and Pulmonary Adenocarcinoma Cancer Cell Lines. J Biomed Phys Eng. 2024;14(2):159-68. doi: 10.31661/jbpe.v0i0.2401-1708. PubMed PMID: 38628892. PubMed PMCID: PMC11016824.
  14. Karimi M, Karimian K, Heli H. A nanoemulsion-based delivery system for imatinib and in vitro anticancer efficacy. Braz J Pharm Sci. 2020;56:e18973. doi: 10.1590/s2175-97902020000118973.
  15. Sampath S, Sunderam V, Manjusha M, Dlamini Z, Lawrance AV. Selenium Nanoparticles: A Comprehensive Examination of Synthesis Techniques and Their Diverse Applications in Medical Research and Toxicology Studies. Molecules. 2024;29(4):801. doi: 10.3390/molecules29040801. PubMed PMID: 38398553. PubMed PMCID: PMC10893520.
  16. Mohammadi S, Soratijahromi E, Dehdari Vais R, Sattarahmady N. Phototherapy and Sonotherapy of Melanoma Cancer Cells Using Nanoparticles of Selenium-Polyethylene Glycol-Curcumin as a Dual-Mode Sensitizer. J Biomed Phys Eng. 2020;10(5):597-606. doi: 10.31661/jbpe.v0i0.1912-1039. PubMed PMID: 33134219. PubMed PMCID: PMC7557466.
  17. Sharma A, Shambhwani D, Pandey S, Singh J, Lalhlenmawia H, Kumarasamy M, et al. Advances in Lung Cancer Treatment Using Nanomedicines. ACS Omega. 2022;8(1):10-41. doi: 10.1021/acsomega.2c04078. PubMed PMID: 36643475. PubMed PMCID: PMC9835549.
  18. Slama Y, Arcambal A, Septembre-Malaterre A, Morel AL, Pesnel S, Gasque P. Evaluation of core-shell Fe3O4@Au nanoparticles as radioenhancer in A549 cell lung cancer model. 2024;10(8):e29297. doi: 10.1016/j.heliyon.2024.e29297. PubMed PMID: 38644868. PubMed PMCID: PMC11033100.
  19. Wang J, Zhou T, Liu Y, Chen S, Yu Z. Application of Nanoparticles in the Treatment of Lung Cancer With Emphasis on Receptors. Front Pharmacol. 2022;12:781425. doi: 10.3389/fphar.2021.781425. PubMed PMID: 35082668. PubMed PMCID: PMC8785094.
  20. Carrasco-Esteban E, Domínguez-Rullán JA, Barrionuevo-Castillo P, Pelari-Mici L, Leaman O, Sastre-Gallego S, López-Campos F. Current role of nanoparticles in the treatment of lung cancer. J Clin Transl Res. 2021;7(2):140-55. PubMed PMID: 34104817. PubMed PMCID: PMC8177846.
  21. Ilbeigi S, Ranjbar A, Zahraie N, Vais RD, Monjezi MR, Sattarahmady N. Sonodynamic therapy of pancreatic cancer cells based on synergistic chemotherapeutic effects of selenium-PEG-curcumin nanoparticles and gemcitabine. Appl Phys A. 2023;129(2):82. doi: 10.1007/s00339-022-06377-0.
  22. Foucquier J, Guedj M. Analysis of drug combinations: current methodological landscape. Pharmacol Res Perspect. 2015;3(3):e00149. doi: 10.1002/prp2.149. PubMed PMID: 26171228. PubMed PMCID: PMC4492765.
  23. Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70(2):440-6. doi: 10.1158/0008-5472.CAN-09-1947. PubMed PMID: 20068163.
  24. Haghighi H, Zahraie N, Haghani M, Heli H, Sattarahmady N. An amplified sonodynamic therapy by a nanohybrid of titanium dioxide-gold-polyethylene glycol-curcumin: HeLa cancer cells treatment in 2D monolayer and 3D spheroid models. Ultrason Sonochem. 2024;102:106747. doi: 10.1016/j.ultsonch.2023.106747. PubMed PMID: 38154206. PubMed PMCID: PMC10765485.
  25. Ireland G, Simmons R, Hickman M, Eastwood B, Ramsay M, Mandal S. Mapping the hepatitis C cascade of care in people attending drug treatment services in England: A data linkage study. Int J Drug Policy. 2019;72:55-60. doi: 10.1016/j.drugpo.2019.06.006. PubMed PMID: 31257040.
  26. Nazari-Vanani R, Kayani Z, Karimian K, Ajdari MR, Heli H. Development of New Nanoniosome Carriers for Vorinostat: Evaluation of Anticancer Efficacy In Vitro. J Pharm Sci. 2024;113(8):2584-94. doi: 10.1016/j.xphs.2024.05.025. PubMed PMID: 38801974.
  27. Gong L, Zhang Y, Liu C, Zhang M, Han S. Application of Radiosensitizers in Cancer Radiotherapy. Int J Nanomedicine. 2021;16:1083-102. doi: 10.2147/IJN.S290438. PubMed PMID: 33603370. PubMed PMCID: PMC7886779.
  28. Boateng F, Ngwa W. Delivery of Nanoparticle-Based Radiosensitizers for Radiotherapy Applications. Int J Mol Sci. 2019;21(1):273. doi: 10.3390/ijms21010273. PubMed PMID: 31906108. PubMed PMCID: PMC6981554.
  29. Ferro C, Florindo HF, Santos HA. Selenium Nanoparticles for Biomedical Applications: From Development and Characterization to Therapeutics. Adv Healthc Mater. 2021;10(16):e2100598. doi: 10.1002/adhm.202100598. PubMed PMID: 34121366.
  30. Deng X, Ouyang P, Xu W, Yang E, Bao Z, Wu Y, et al. Research progress of nano selenium in the treatment of oxidative stress injury during hepatic ischemia-reperfusion injury. Front Pharmacol. 2023;13:1103483. doi: 10.3389/fphar.2022.1103483. PubMed PMID: 36686647. PubMed PMCID: PMC9846509.
  31. Zhao G, Wu X, Chen P, Zhang L, Yang CS, Zhang J. Selenium nanoparticles are more efficient than sodium selenite in producing reactive oxygen species and hyper-accumulation of selenium nanoparticles in cancer cells generates potent therapeutic effects. Free Radic Biol Med. 2018;126:55-66. doi: 10.1016/j.freeradbiomed.2018.07.017. PubMed PMID: 30056082.