Document Type : Original Research

Authors

1 Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran

2 Research Center for Molecular and Cellular Imaging (RCMCI), Advanced Medical Technologies and Equipment (AMTEI), Tehran University of Medical Sciences (TUMS), Tehran, Iran

3 Department of Nuclear Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran

4 Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran

5 PET/CT and Cyclotron Center, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran

10.31661/jbpe.v0i0.2502-1893

Abstract

Background: Employing 2D rebinned sinograms in PET scanners has the potential to accelerate the overall reconstruction speed. Among the available rebinning techniques, Single-Slice Rebinning (SSRB) offers a computationally efficient approach.
Objective: This study aimed to evaluate the influence of varying span and Maximum Ring Difference (MRD) parameters in SSRB on the image quality of the Xtrim PET scanner.
Material and Methods: This Monte Carlo simulation study used a GATE-simulated Xtrim-PET scanner. 3D list-mode data were histogrammed into 576 sinograms, and SSRB was applied to generate 2D sinograms. Subsequently, Maximum-Likelihood Expectation-Maximization (MLEM) reconstruction was performed on the sinograms with different MRD and span. Image quality was assessed using image quality, rod, and uniform phantoms. Furthermore, axial resolution was evaluated using point sources.
Results: Analysis of linear profiles in uniform phantom revealed a 2.6 mm inaccuracy in axial activity estimation when comparing spans of 21 and 7. Increased span and MRD lead to artifactual data in regions of high activity gradients, as observed in both uniform and rod phantoms. However, the Recovery Coefficient (RC) and Spilled-Over Ratio (SOR) remained unaffected. Concomitantly, increasing the span improved uniformity and reduced the coefficient of variation by 1.6% and 5.9%, respectively. Axial resolution remained largely unaffected by variations in span and MRD. 
Conclusion: The RC and SOR remain robust to variations in span and MRD. However, higher levels of axial data compression were associated with the introduction of axial artifacts. Additionally, axial resolution was unaffected by increases in span and MRD, likely due to the limited field of view of the Xtrim-PET scanner.

Highlights

Tahereh Zare (Google Scholar)

Mohammad Reza Ay (Google Scholar)

Keywords

  1. Miyaoka RS, Lehnert AL. Small animal PET: a review of what we have done and where we are going. Phys Med Biol. 2020;65(24):24TR04. doi: 10.1088/1361-6560/ab8f71. PubMed PMID: 32357344.
  2. Efthimiou N, Wright JD, Clayton L, Renard I, Zagni F, Caribé PR, et al. Influence of multiple animal scanning on image quality for the sedecal superArgus2R preclinical PET scanner. Frontiers in Physics. 2021;8:531662. doi: 10.3389/fphy.2020.531662.
  3. Zaidi H. Quantitative analysis in nuclear medicine imaging. Springer; 2006.
  4. Brix G, Zaers J, Adam LE, Bellemann ME, Ostertag H, Trojan H, et al. Performance evaluation of a whole-body PET scanner using the NEMA protocol. National Electrical Manufacturers Association. J Nucl Med. 1997;38(10):1614-23. PubMed PMID: 9379202.
  5. De Bernardi E, Mazzoli M, Zito F, Baselli G. Evaluation of frequency-distance relation validity for FORE optimization in 3-D PET. IEEE Transactions on Nuclear Science. 2007;54(5):1670-8. doi: 10.1109/TNS.2007.905175.
  6. Daube-Witherspoon ME, Muehllehner G. Treatment of axial data in three-dimensional PET. J Nucl Med. 1987;28(11):1717-24. PubMed PMID: 3499493.
  7. Lewittt RM, Muehllehner G, Karpt JS. Three-dimensional image reconstruction for PET by multi-slice rebinning and axial image filtering. Phys Med Biol. 1994;39(3):321-39. doi: 10.1088/0031-9155/39/3/002. PubMed PMID: 15551583.
  8. Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport DF. Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging. 1997;16(2):145-58. doi: 10.1109/42.563660. PubMed PMID: 9101324.
  9. Liu X, Comtat C, Michel C, Kinahan P, Defrise M, Townsend D. Comparison of 3-D reconstruction with 3D-OSEM and with FORE+OSEM for PET. IEEE Trans Med Imaging. 2001;20(8):804-14. doi: 10.1109/42.938248. PubMed PMID: 11513031.
  10. Bendriem B, Townsend DW. The theory and practice of 3D PET. Springer Science & Business Media; 1998.
  11. Defrise M, Kinahan PE, Michel CJ. Image reconstruction algorithms in PET. In: Positron emission tomography: basic sciences. London: Springer; 2005. p. 63-91.
  12. Fahey FH. Data acquisition in PET imaging. J Nucl Med Technol. 2002;30(2):39-49. PubMed PMID: 12055275.
  13. Hasegawa T, Wada Y, Murayama H, Nakajima T. Basic performance of the PET scanner, EXACT HR/sup+/, with adjustable data-acquisition parameters. In: IEEE Nuclear Science Symposium Conference Record 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No. 98CH36255); Toronto, ON, Canada: IEEE; 1998. p. 1721-8.
  14. López-Montes A, Galve P, Udias JM, Cal-González J, Vaquero JJ, Desco M, Herraiz JL. Real-time 3D PET image with pseudoinverse reconstruction. Appl Sci. 2020;10(8):2829. doi: 10.3390/app10082829.
  15. Tai YC, Ruangma A, Rowland D, Siegel S, Newport DF, Chow PL, Laforest R. Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging. J Nucl Med. 2005;46(3):455-63. PubMed PMID: 15750159.
  16. Mackewn JE, Lerche CW, Weissler B, Sunassee K, De Rosales RT, Phinikaridou A, et al. PET performance evaluation of a pre-clinical SiPM-based MR-compatible PET scanner. IEEE Transactions on Nuclear Science. 2015;62(3):784-90. doi: 10.1109/TNS.2015.2392560.
  17. Angelis G, Bickell M, Kyme A, Ryder W, Zhou L, Nuyts J, et al. Calculated attenuation correction for awake small animal brain PET studies. In IEEE nuclear science symposium and medical imaging conference (2013 NSS/MIC); Seoul, Korea (South): IEEE; 2013. p. 1-4.
  18. Popota FD, Aguiar P, Herance JR, Pareto D, Rojas S, Ros D, et al. Comparison of the performance evaluation of the MicroPET R4 scanner according to NEMA standards NU 4-2008 and NU 2-2001. IEEE Transactions on Nuclear Science. 2012;59(5):1879-86. doi: 10.1109/TNS.2012.2208760.
  19. Amirrashedi M, Sarkar S, Ghafarian P, Hashemi Shahraki R, Geramifar P, Zaidi H, Ay MR. NEMA NU-4 2008 performance evaluation of Xtrim-PET: A prototype SiPM-based preclinical scanner. Med Phys. 2019;46(11):4816-25. doi: 10.1002/mp.13785. PubMed PMID: 31448421.
  20. Sajedi S, Zeraatkar N, Taheri M, Kaviani S, Khanmohammadi H, Sarkar S, et al. Development and preliminary results of Xtrim-PET, a modular cost-effective preclinical scanner. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2019;940:288-95. doi: 10.1016/j.nima.2019.06.009.
  21. Jan S, Santin G, Strul D, Staelens S, Assié K, Autret D, et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004;49(19):4543-61. doi: 10.1088/0031-9155/49/19/007. PubMed PMID: 15552416. PubMed PMCID: PMC3267383.
  22. Sheikhzadeh P, Sabet H, Ghadiri H, Geramifar P, Mahani H, Ghafarian P, Ay MR. Development and validation of an accurate GATE model for NeuroPET scanner. Phys Med. 2017;40:59-65. doi: 10.1016/j.ejmp.2017.07.008. PubMed PMID: 28716541.
  23. Zeraatkar N, Ay MR, Ghafarian P, Sarkar S, Geramifar P, Rahmim A. Monte Carlo-based evaluation of inter-crystal scatter and penetration in the PET subsystem of three GE Discovery PET/CT scanners. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2011;659(1):508-14. doi: 10.1016/j.nima.2011.07.049.
  24. Pells S, Cullen DM, Deidda D, Denis-Bacelar AM, Fenwick A, Ferreira KM, et al. Quantitative validation of Monte Carlo SPECT simulation: application to a Mediso AnyScan GATE simulation. EJNMMI Phys. 2023;10(1):60. doi: 10.1186/s40658-023-00581-4. PubMed PMID: 37777689. PubMed PMCID: PMC10542438.
  25. Bahadorzadeh B, Faghihi R, Sina S, Aghaz A, Rahmim A, Ay MR. Design and implementation of continuous bed motion (CBM) in Xtrim preclinical PET scanner for whole-body Imaging: MC simulation and experimental measurements. Phys Med. 2024;123:103395. doi: 10.1016/j.ejmp.2024.103395. PubMed PMID: 38843650.
  26. Performance Measurements of Small Animal Positron Emission Tomographs. NEMA Standards Publication NU 4-2008; Rosslyn: National Electrical Manufacturers Association; 2008.
  27. Chang LT. A method for attenuation correction in radionuclide computed tomography. IEEE Transactions on Nuclear Science. 1978;25(1):638-43. doi: 10.1109/TNS.1978.4329385.
  28. Loening AM, Gambhir SS. AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging. 2003;2(3):131-7. doi: 10.1162/15353500200303133. PubMed PMID: 14649056.
  29. Zanzonico P. Routine quality control of clinical nuclear medicine instrumentation: a brief review. J Nucl Med. 2008;49(7):1114-31. doi: 10.2967/jnumed.107.050203. PubMed PMID: 18587088. PubMed PMCID: PMC2703015.
  30. Adam LE, Zaers J, Ostertag H, Trojan H, Bellemann ME, Brix G, Lorenz WJ. Performance evaluation of the whole-body PET scanner ECAT EXACT HR/sup+. In IEEE Nuclear Science Symposium Conference Record; Anaheim, CA, USA: IEEE; 1996. p. 1270-4.
  31. Daube-Witherspoon ME, Popescu LM, Matej S, Cardi CA, Lewitt RM, Karp JS. Rebinning and reconstruction of point source transmission data for positron emission tomography. In IEEE Nuclear Science Symposium Conference Record (IEEE Cat. No.03CH37515); Portland, OR, USA: IEEE; 2003. p. 2839-43.