Document Type : Original Research
Authors
1 School of Information Science and Engineering, Changsha Normal University, Changsha 410100, China
2 School of Information Science and Engineering, Xinyu University, Xinyu, 338004, China
Abstract
Background: High-Intensity Focused Ultrasound (HIFU) represents a non-invasive treatment approach that utilizes non-ionizing radiation. This technique has found clinical utility in managing both benign and malignant solid tumors.
Objective: This study aimed to investigate the variations in HIFU frequency and duty cycle influence thermal lesion formation in tissue to identify the optimal parameter combination for HIFU therapy in multi-layered tissues.
Material and Methods: In this theoretical framework, a model of HIFU application to multi-layer biological tissues was created. Four unique HIFU parameter sets, defined by combining high or low frequency with high or low duty cycle, were comprehensively examined. The study analyzed how these settings influenced temperature distributions and lesion area in the layered tissue to ascertain the ideal combination of frequency and duty cycle parameters.
Results: Simulation results revealed that the former parameter set (high frequency, low duty cycle) was optimal for treating smaller, superficial tumours, whereas the latter combination (low frequency, high duty cycle) proved effective for deeper-seated lesions. Regarding thermal dose metrics, the high-energy setting (high frequency, high duty cycle) generated the most extensive lesion area and highest peak temperature, in contrast to the low-energy configuration (low frequency, low duty cycle), which produced the smallest coagulation zone and lowest focal temperature.
Conclusion: The study demonstrates that optimal HIFU therapeutic outcomes require frequency-duty cycle combinations tailored to tumour characteristics, with high-frequency/low-duty cycle for shallow small tumours and low-frequency/high-duty cycle for deep lesions, providing a framework for precision parameter selection in clinical applications.
Highlights
Hu Dong (PubMed)
Keywords
- Biasiori-Poulanges L, Lukić B, Supponen O. Cavitation cloud formation and surface damage of a model stone in a high-intensity focused ultrasound field. Ultrason Sonochem. 2024;102:106738. doi: 10.1016/j.ultsonch.2023.106738. PubMed PMID: 38150955. PubMed PMCID: PMC10765487.
- Moghimnezhad M, Shahidian A, Andayesh M. Multiphysics Analysis of Ultrasonic Shock Wave Lithotripsy and Side Effects on Surrounding Tissues. J Biomed Phys Eng. 2021;11(6):701-12. doi: 10.31661/jbpe.v0i0.1182. PubMed PMID: 34904067. PubMed PMCID: PMC8649164.
- Chen Y, Lin S, Xie X, Yi J, Liu X, Guo SW. Systematic review and meta-analysis of reproductive outcomes after high-intensity focused ultrasound (HIFU) treatment of adenomyosis. Best Practice & Research Clinical Obstetrics & Gynaecology. 2024;92:102433. doi: 10.1016/j.bpobgyn.2023.102433.
- Kung Y, Lan C, Hsiao MY, Sun MK, Hsu YH, Huang AP, et al. Focused shockwave induced blood-brain barrier opening and transfection. Sci Rep. 2018;8(1):2218. doi: 10.1038/s41598-018-20672-y. PubMed PMID: 29396523. PubMed PMCID: PMC5797245.
- Snipstad S, Vikedal K, Maardalen M, Kurbatskaya A, Sulheim E, Davies CL. Ultrasound and microbubbles to beat barriers in tumors: Improving delivery of nanomedicine. Adv Drug Deliv Rev. 2021;177:113847. doi: 10.1016/j.addr.2021.113847. PubMed PMID: 34182018.
- Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, et al. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol. 2022;15(1):132. doi: 10.1186/s13045-022-01320-5. PubMed PMID: 36096856. PubMed PMCID: PMC9469622.
- Zhu Q, Liu C, Liu L, Li Y. Effect of pulse parameters on ablation efficiency in dual-frequency HIFU therapy. 2023;134:107064. doi: 10.1016/j.ultras.2023.107064. PubMed PMID: 37331052.
- Duclos S, Golin A, Fox A, Chaudhary N, Camelo-Piragua S, Pandey A, Xu Z. Transcranial histotripsy parameter study in primary and metastatic murine brain tumor models. Int J Hyperthermia. 2023;40(1):2237218. doi: 10.1080/02656736.2023.2237218. PubMed PMID: 37495214. PubMed PMCID: PMC10410615.
- Quadri SA, Waqas M, Khan I, Khan MA, Suriya SS, Farooqui M, Fiani B. High-intensity focused ultrasound: past, present, and future in neurosurgery. Neurosurg Focus. 2018;44(2):E16. doi: 10.3171/2017.11.FOCUS17610. PubMed PMID: 29385923.
- Bouakaz A, Bouhmila F, Georgiev SG, Kheloufi A, Khoufache S. Existence of classical solutions for a class of the Khokhlov–Zabolotskaya–Kuznetsov type equations. Vladikavkaz Math J. 2023;25(3):36-50. doi: 10.46698/n8469-5074-4131-b.
- Kagami S, Kanagawa T. Weakly nonlinear propagation of focused ultrasound in bubbly liquids with a thermal effect: Derivation of two cases of Khokolov-Zabolotskaya-Kuznetsoz equations. Ultrason Sonochem. 2022;88:105911. doi: 10.1016/j.ultsonch.2022.105911. PubMed PMID: 35810619. PubMed PMCID: PMC9696949.
- Guo GP, Li XF, Chen ZH, Meng TH, Li YZ, Ma QY. Nonlinear fields of focused acoustic-vortex beams. Applied Acoustics. 2024;221:110022. doi: 10.1016/j.apacoust.2024.110022.
- Hasani MH, Gharibzadeh S, Farjami Y, Tavakkoli J. Unmitigated numerical solution to the diffraction term in the parabolic nonlinear ultrasound wave equation. J Acoust Soc Am. 2013;134(3):1775-90. doi: 10.1121/1.4774278. PubMed PMID: 23967912.
- Yang X, Cleveland RO. Time domain simulation of nonlinear acoustic beams generated by rectangular pistons with application to harmonic imaging. J Acoust Soc Am. 2005;117(1):113-23. doi: 10.1121/1.1828671. PubMed PMID: 15704404.
- Sheng R, Zhang J. Ultrasonic nonlinear fields generated from transmitters with varied aperture angles. Applied Acoustics. 2022;195:108867. doi: 10.1016/j.apacoust.2022.108867.
- Zhou H, Huang SH, Li W. Parametric Acoustic Array and Its Application in Underwater Acoustic Engineering. Sensors (Basel). 2020;20(7):2148. doi: 10.3390/s20072148. PubMed PMID: 32290194. PubMed PMCID: PMC7180615.
- Haddadi S, Ahmadian MT. Numerical and Experimental Evaluation of High-Intensity Focused Ultrasound-Induced Lesions in Liver Tissue Ex Vivo. J Ultrasound Med. 2018;37(6):1481-91. doi: 10.1002/jum.14491. PubMed PMID: 29193279.
- Hajihasani M, Farjami Y, Gharibzadeh S, Tavakkoli J. A novel numerical solution to the diffraction term in the KZK nonlinear wave equation. In 38th Annual Symposium of the Ultrasonic Industry Association (UIA); IEEE; 2009. p. 1-9.
- Davis TA, Rajamanickam S, Sid-Lakhdar WM. A survey of direct methods for sparse linear systems. Acta Numerica. 2016;25:383-566. doi: 10.1017/S0962492916000076.
- Yuldashev PV, Karzova MM, Kreider W, Rosnitskiy PB, Sapozhnikov OA, Khokhlova VA. “HIFU Beam:” a simulator for predicting axially symmetric nonlinear acoustic fields generated by focused transducers in a layered medium. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68(9):2837-52. doi: 10.1109/ TUFFC.2021.3074611.
- Irfan M, Shah FA, Nisar KS. Fibonacci wavelet method for solving Pennes bioheat transfer equation. International Journal of Wavelets, Multiresolution and Information Processing. 2021;19(06):2150023. doi: 10.1142/S0219691321500235.
- El-Sapa S, El-Bary AA, Albalawi W, Atef HM. Modelling Pennes’, bioheat transfer equation in thermoelasticity with one relaxation time. Journal of Electromagnetic Waves and Applications. 2024;38(1):105-21. doi: 10.1080/09205071.2023.2272612.
- Dehbani M, Rahimi M, Rahimi Z. A review on convective heat transfer enhancement using ultrasound. Applied Thermal Engineering. 2022;208:118273. doi: 10.1016/j.applthermaleng.2022.118273.
- Dong H, Liu G, Tong X. Influence of temperature-dependent acoustic and thermal parameters and nonlinear harmonics on the prediction of thermal lesion under HIFU ablation. Math Biosci Eng. 2021;18(2):1340-51. doi: 10.3934/mbe.2021070. PubMed PMID: 33757188.
- Zou X, Qian S, Tan Q, Dong H. Formation of thermal lesions in tissue and its optimal control during HIFU scanning therapy. Symmetry. 2020;12(9):1386. doi: 10.3390/sym12091386.
- Gupta P, Srivastava A. Numerical analysis of thermal response of tissues subjected to high intensity focused ultrasound. Int J Hyperthermia. 2018;35(1):419-34. doi: 10.1080/02656736.2018.1506166. PubMed PMID: 30307345.
- Hallaj IM, Cleveland RO, Hynynen K. Simulations of the thermo-acoustic lens effect during focused ultrasound surgery. J Acoust Soc Am. 2001;109(5 Pt 1):2245-53. doi: 10.1121/1.1360239. PubMed PMID: 11386575.
- Heikkilä J, Curiel L, Hynynen K. Local harmonic motion monitoring of focused ultrasound surgery--a simulation model. IEEE Trans Biomed Eng. 2010;57(1):185-93. doi: 10.1109/TBME.2009.2033465. PubMed PMID: 19822463.
- Almekkaway MK, Shehata IA, Ebbini ES. Anatomical-based model for simulation of HIFU-induced lesions in atherosclerotic plaques. Int J Hyperthermia. 2015;31(4):433-42. doi: 10.3109/02656736.2015.1018966. PubMed PMID: 25875223.
- Kyriakou Z, Corral-Baques MI, Amat A, Coussios CC. HIFU-induced cavitation and heating in ex vivo porcine subcutaneous fat. Ultrasound Med Biol. 2011;37(4):568-79. doi: 10.1016/j.ultrasmedbio.2011.01.001. PubMed PMID: 21371810.
- Ginter S. Numerical simulation of ultrasound-thermotherapy combining nonlinear wave propagation with broadband soft-tissue absorption. 2000;37(10):693-6. doi: 10.1016/s0041-624x(00)00012-3. PubMed PMID: 10950353.
- Suomi V, Treeby B, Jaros J, Makela P, Anttinen M, Saunavaara J, et al. Transurethral ultrasound therapy of the prostate in the presence of calcifications: A simulation study. Med Phys. 2018;45(11):4793-805. doi: 10.1002/mp.13183. PubMed PMID: 30216469.
- Dong H, Liu G, Ma Zh, Peng G, Pan P. Simulation Study on the Effect of High-Intensity Focused Ultrasound on Thermal Lesion of Biological Tissue under Different Treatment Modes. Iran J Med Phys 2022;19:199-206. 10.22038/IJMP.2022.59497.1999.
- Sharma U, Chang EW, Yun SH. Long-wavelength optical coherence tomography at 1.7 microm for enhanced imaging depth. Opt Express. 2008;16(24):19712-23. doi: 10.1364/oe.16.019712. PubMed PMID: 19030057. PubMed PMCID: PMC2773451.
- Chen C, Sun A, Ju BF, Wang C. Width and depth gauging of rectangular subsurface defects based on all-optical laser-ultrasonic technology. Applied Acoustics. 2022;191:108684. doi: 10.1016/j.apacoust.2022.108684.
- Mei L, Zhang Z. Advances in Biological Application of and Research on Low-Frequency Ultrasound. Ultrasound Med Biol. 2021;47(10):2839-52. doi: 10.1016/j.ultrasmedbio.2021.06.005. PubMed PMID: 34304908.
- Jiang L, Lu G, Yang Y, Xu Y, Qi F, Li J, et al. Multichannel Piezo-Ultrasound Implant with Hybrid Waterborne Acoustic Metastructure for Selective Wireless Energy Transfer at Megahertz Frequencies. Adv Mater. 2021;33(44):e2104251. doi: 10.1002/adma.202104251. PubMed PMID: 34480501.
- Juang EK, De Koninck LH, Vuong KS, Gnanaskandan A, Hsiao CT, Averkiou MA. Controlled Hyperthermia With High-Intensity Focused Ultrasound and Ultrasound Contrast Agent Microbubbles in Porcine Liver. Ultrasound Med Biol. 2023;49(8):1852-60. doi: 10.1016/j.ultrasmedbio.2023.04.015. PubMed PMID: 37246049. PubMed PMCID: PMC10330369.
- Quarato CMI, Lacedonia D, Salvemini M, Tuccari G, Mastrodonato G, Villani R, et al. A Review on Biological Effects of Ultrasounds: Key Messages for Clinicians. Diagnostics (Basel). 2023;13(5):855. doi: 10.3390/diagnostics13050855. PubMed PMID: 36899998. PubMed PMCID: PMC10001275.
- Xu Z, Hall TL, Vlaisavljevich E, Lee FT Jr. Histotripsy: the first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound. Int J Hyperthermia. 2021;38(1):561-75. doi: 10.1080/02656736.2021.1905189. PubMed PMID: 33827375. PubMed PMCID: PMC9404673.
- Babenko VA, Sychev AA, Bunkin NF. Optical Breakdown on Clusters of Gas Nanobubbles in Water; Possible Applications in Laser Ophthalmology. Appl Sci. 2023;13(4):2183. doi: 10.3390/app13042183.