Document Type : Original Research

Authors

Orthopedic & Rehabilitation Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

10.31661/jbpe.v0i0.2503-1907

Abstract

Background: Degenerative Joint Disease (DJD) of the first Metacarpophalangeal (MCP) joint, can severely impair hand function due to pain, stiffness, and reduced range of motion. Anatomical variations in metacarpal head morphology may play a critical role in altering joint biomechanics and stress distribution, potentially accelerating cartilage wear and osteoarthritis progression.
Objective: This study aimed to evaluate the biomechanical impact of different first metacarpal head morphologies on stress distribution within the MCP joint under various positions using computer simulation.
Material and Methods: In this computer simulation study, three-dimensional models of the thumb MCP joint were reconstructed from Computed Tomography (CT) scans of healthy subjects. The models were adjusted to represent flat, biplanar, and convex metacarpal head morphologies and were simulated in three positions: neutral, 20° flexion, and 20° extension. Computer simulation was performed using Analysis System (ANSYS) to calculate von Mises stress distributions. Descriptive statistics and one-way Analysis of Variance (ANOVA) were applied to compare stress values between groups.
Results: The flat metacarpal head exhibited the highest stress concentrations, peaking at 138 MPa in 20° extension. Biplanar morphology showed moderate stresses, while the convex shape demonstrated the lowest stress, with a maximum of 58 MPa. The analysis confirmed significant differences between groups (P-value=0.039). Stress increased notably in flexion and extension positions compared to neutral across all morphologies. 
Conclusion: Metacarpal head morphology and joint positioning significantly influence MCP joint biomechanics. Flat and biplanar shapes increase stress concentration, potentially elevating DJD risk. Convex morphology offers better stress dispersion, indicating a biomechanical advantage.

Highlights

Hamid Namazi (Google Scholar)

Keywords

  1. Abramoff B, Caldera FE. Osteoarthritis: Pathology, Diagnosis, and Treatment Options. Med Clin North Am. 2020;104(2):293-311. doi: 10.1016/j.mcna.2019.10.007. PubMed PMID: 32035570.
  2. Yao J, Park MJ. Early treatment of degenerative arthritis of the thumb carpometacarpal joint. Hand Clin. 2008;24(3):251-61. doi: 10.1016/j.hcl.2008.03.001. PubMed PMID: 18675716.
  3. Shin EK, Osterman AL. Treatment of thumb metacarpophalangeal and interphalangeal joint arthritis. Hand Clin. 2008;24(3):239-50. doi: 10.1016/j.hcl.2008.03.007. Erratum in: Hand Clin. 2008;24(4):485. PubMed PMID: 18675715.
  4. Rizzo M. Metacarpophalangeal joint arthritis. J Hand Surg Am. 2011;36(2):345-53. doi: 10.1016/j.jhsa.2010.11.035. PubMed PMID: 21276901.
  5. Moein SA, Fereidooni R, Kousari A. Simultaneous quadruple dislocations of the hand in a motorcyclist: A case report. Trauma Case Rep. 2023;47:100900. doi: 10.1016/j.tcr.2023.100900. PubMed PMID: 37663377. PubMed PMCID: PMC10474604.
  6. Pavelich GM, Brena KR, Heinze JD, Dorf E. A Comparative Study of Thumb Metacarpal Morphology and Shape Categorization. J Hand Surg Am. 2023;48(3):308.e1-4. doi: 10.1016/j.jhsa.2021.09.035. PubMed PMID: 34937669.
  7. Galletta L, Stephens NB, Bardo A, Kivell TL, Marchi D. Three-dimensional geometric morphometric analysis of the first metacarpal distal articular surface in humans, great apes and fossil hominins. J Hum Evol. 2019;132:119-36. doi: 10.1016/j.jhevol.2019.04.008. PubMed PMID: 31203843.
  8. Degeorge B, Delvaque JG, Carre R, Teissier J, Chammas M. Metacarpophalangeal hyperextension in trapeziometacarpal osteoarthritis: Relationship to first metacarpal head shape, and clinical impact. Hand Surg Rehabil. 2024;43(4):101725. doi: 10.1016/j.hansur.2024.101725. PubMed PMID: 38796060.
  9. Earp B, Cefalu C, Blazar P. Thumb Metacarpophalangeal Joint Arthritis. J Am Acad Orthop Surg. 2019;27(23):e1029-39. doi: 10.5435/JAAOS-D-18-00683. PubMed PMID: 31356425.
  10. Terrono A, Millender L, Nalebuff E. Boutonniere rheumatoid thumb deformity. J Hand Surg Am. 1990;15(6):999-1003. doi: 10.1016/0363-5023(90)90032-m. PubMed PMID: 2269799.
  11. Oda R, Toyama S, Fujiwara H. A New Approach for the Correction of Type I Thumb Deformity Owing to Rheumatoid Arthritis. J Hand Surg Glob Online. 2019;2(1):55-60. doi: 10.1016/j.jhsg.2019.09.002. PubMed PMID: 35415477. PubMed PMCID: PMC8991876.
  12. Guo M, Qi B, Li J, Shi X, Ni H, Shi H, et al. Mechanical properties evaluation of metacarpophalangeal joint prosthesis with new titanium-nickel memory alloy: a cadaver study. BMC Musculoskelet Disord. 2023;24(1):738. doi: 10.1186/s12891-023-06859-z. PubMed PMID: 37715199. PubMed PMCID: PMC10504783.
  13. Day CS, Ramirez MA. Thumb metacarpophalangeal arthritis: arthroplasty or fusion? Hand Clin. 2006;22(2):211-20. doi: 10.1016/j.hcl.2006.02.010. PubMed PMID: 16701135.
  14. McGovern RM, Shin AY, Beckenbaugh RD, Linscheid RL. Long-term results of cemented Steffee arthroplasty of the thumb metacarpophalangeal joint. J Hand Surg Am. 2001;26(1):115-22. doi: 10.1053/jhsu.2001.21533. PubMed PMID: 11172377.
  15. Vanderzanden JC, Adams BD, Guan JJ. MCP arthrodesis using an intramedullary interlocking device. Hand (N Y). 2014;9(2):209-13. doi: 10.1007/s11552-013-9579-5. PubMed PMID: 24839423. PubMed PMCID: PMC4022958.
  16. Zafari H, Moein SA, Razzaghof M, Mortazavi SMJ. The contributing factors of nonunion bone fractures: A brief review. J Orthop Spine Trauma. 2022:44-7. doi: 10.18502/jost.v8i2.9309.