Document Type : Original Research

Authors

Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

10.31661/jbpe.v0i0.2506-1941

Abstract

Background: Breast cancer, the most common cancer among women, necessitates early detection. Despite advances in Computer-Aided Diagnosis (CAD), lesion detection in mammograms remains challenging. Artificial Intelligence (AI) in radiology offers significant potential to enhance diagnostic accuracy in medical imaging.
Objective: This study compares object detection methods to identify the most effective model for smart diagnostic systems. This comprehensive study is the first to apply the advanced You Only Look Once version 12 (YOLO-v12) architecture for the automated detection and localization of lesions in mammographic images and to identify their malignancy or benignity status with high precision.
Material and Methods: This comparative experimental study, utilizing retrospective data, also evaluated two state-of-the-art models, the Detection Transformer (DETR) and RetinaNet, for their performance. The models were trained and tested on the publicly available Categorized Digital Database for Low-Energy and Subtracted Contrast-Enhanced Spectral Mammography (CDD-CESM), which contains 1,982 mammograms with 3,720 annotated lesions of various types and sizes.
Results: YOLO-v12 demonstrated excellent diagnostic accuracy (mean Average Precision at an IOU threshold of 0.5 (mAP50)=0.98; Intersection Over Union (IOU)=0.95), significantly outperforming contemporary models and older YOLO versions. 
Conclusion: The promising and robust results clearly underscore the remarkable potential of artificial intelligence technologies in effectively assisting radiologists with the early detection and diagnosis of breast cancer. These findings advocate for the implementation of YOLO-v12 in clinical mammography screening applications and suggest that future research should prioritize real-time diagnostic systems to further enhance breast cancer detection capabilities.

Highlights

Mohammad Amin Sakha (Google Scholar)

Ali Ameri (Google Scholar)

Keywords

  1. Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, et al. Breast Cancer Statistics, 2022. CA Cancer J Clin. 2022;72(6):524-41. doi: 10.3322/caac.21754. PubMed PMID: 36190501.
  2. Chintakunta JP, Lepakshi VA. Quantifying Recent State-of-Arts for Breast Cancer Segmentation, Detection and Classification: A Review. 2nd International Conference on Renewable Energy, Green Computing and Sustainable Development (ICREGCSD 2025); Hyderabad, India: E3S Web of Conferences; 2025. p. 12.
  3. Haerunisa L, Noviartha D. The Analysis Study of Diagnostic Performance and Accuracy of Mammography as Screening and Diagnostic of Breast Cancer: A Comprehensive Systematic Review. Int J Med Sci Health Res. 2025;8(2):25-45. doi: 10.70070/8a3ben43.
  4. Nićiforović D, Nikolić MB, Drvendžija Z, Nikolić O, Mijatović A, Lukač S, Stojanović S. Contrast-enhanced mammography in breast cancer screening: our experiences. Vojnosanit Pregl. 2025;82(2):86-93. doi: 10.2298/VSP240606005N.
  5. Dada EG, Oyewola DO, Misra S. Computer-aided diagnosis of breast cancer from mammogram images using deep learning algorithms. J Electr Syst Inf Technol. 2024;11(1):38. doi: 10.1186/s43067-024-00164-y.
  6. Rahman MM, Ghasemi Y, Suley E, Zhou Y, Wang S, Rogers J. Machine learning based computer aided diagnosis of breast cancer utilizing anthropometric and clinical features. 2021;42(4):215-26. doi: 10.1016/j.irbm.2020.05.005.
  7. Ramadan SZ. Methods Used in Computer-Aided Diagnosis for Breast Cancer Detection Using Mammograms: A Review. J Healthc Eng. 2020;2020:9162464. doi: 10.1155/2020/9162464. PubMed PMID: 32300474. PubMed PMCID: PMC7091549.
  8. Eltrass AS, Salama MS. Fully automated scheme for computer‐aided detection and breast cancer diagnosis using digitised mammograms. IET Image Process. 2020;14(3):495-505. doi: 10.1049/iet-ipr.2018.5953.
  9. Yoon JH, Kim EK. Deep Learning-Based Artificial Intelligence for Mammography. Korean J Radiol. 2021;22(8):1225-39. doi: 10.3348/kjr.2020.1210. PubMed PMID: 33987993. PubMed PMCID: PMC8316774.
  10. Watanabe AT, Lim V, Vu HX, Chim R, Weise E, Liu J, et al. Improved Cancer Detection Using Artificial Intelligence: a Retrospective Evaluation of Missed Cancers on Mammography. J Digit Imaging. 2019;32(4):625-37. doi: 10.1007/s10278-019-00192-5. PubMed PMID: 31011956. PubMed PMCID: PMC6646649.
  11. Demirel S, Urfalı A, Bozkır ÖF, Çelikten A, Budak A, Karataş H. Improving Mass Detection in Mammography Using Focal Loss Based RetinaNet. Turk J Forecast. 2023;7(1):1-9. doi: 10.34110/forecasting.1326245.
  12. Quiñones-Espín AE, Perez-Diaz M, Espín-Coto RM, Rodriguez-Linares D, Lopez-Cabrera JD. Automatic detection of breast masses using deep learning with YOLO approach. Health and Technology. 2023;13(6):915-23. doi: 10.1007/s12553-023-00783-x.
  13. Duque A, Zambrano C, Pérez-Pérez N, Benítez D, Grijalva F, Baldeon-Calisto M. Exploring the Use of Deformable Detection Transformers for Breast Mass Detection. IEEE Biennial Congress of Argentina (ARGENCON); San Nicolás de los: IEEE; 2024. p. 1-7.
  14. Shia WC, Ku TH. Enhancing Microcalcification Detection in Mammography with YOLO-v8 Performance and Clinical Implications. Diagnostics (Basel). 2024;14(24):2875. doi: 10.3390/diagnostics14242875. PubMed PMID: 39767236. PubMed PMCID: PMC11675152.
  15. Khaled R, Helal M, Alfarghaly O, Mokhtar O, Elkorany A, El Kassas H, Fahmy A. Categorized contrast enhanced mammography dataset for diagnostic and artificial intelligence research. Sci Data. 2022;9(1):122. doi: 10.1038/s41597-022-01238-0. PubMed PMID: 35354835. PubMed PMCID: PMC8967853.
  16. Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S. End-to-end object detection with transformers. In European conference on computer vision; Cham: Springer; 2020. p. 213-29.
  17. Wang M, Liu R, Luttrell Iv J, Zhang C, Xie J. Detection of Masses in Mammogram Images Based on the Enhanced RetinaNet Network With INbreast Dataset. J Multidiscip Healthc. 2025;18:675-95. doi: 10.2147/JMDH.S493873. PubMed PMID: 39935433. PubMed PMCID: PMC11812562.
  18. Alif MA, Hussain M. Yolov12: A breakdown of the key architectural features [Internet]. arXiv [Preprint]. 2025 [cited 2025 Feb 20]. Available from: https://arxiv.org/abs/2502.14740.
  19. Sapkota R, Flores-Calero M, Qureshi R, Badgujar C, Nepal U, Poulose Aet al. YOLO advances to its genesis: a decadal and comprehensive review of the You Only Look Once (YOLO) series. Artif Intell Rev. 2025;58(9):274. doi: 10.1007/s10462-025-11253-3.
  20. Jegham N, Koh CY, Abdelatti M, Hendawi A. Yolo evolution: A comprehensive benchmark and architectural review of yolov12, yolo11, and their previous versions [Internet]. arXiv [Preprint]. 2024 [cited 2024 Oct 31]. Available from: https://arxiv.org/abs/2411.00201.
  21. Boudouh SS, Bouakkaz M. Breast cancer: toward an accurate breast tumor detection model in mammography using transfer learning techniques. Multimed Tools Appl. 2023;82(22):34913-36. doi: 10.1007/s11042-023-14410-4.
  22. Hassan NM, Hamad S, Mahar K. YOLO-based CAD framework with ViT transformer for breast mass detection and classification in CESM and FFDM images. Neural Comput & Applic. 2024;36(12):6467-96. doi: 10.1007/s00521-023-09364-5.
  23. Tian Y, Ye Q, Doermann D. Yolov12: Attention-centric real-time object detectors [Internet]. arXiv [Preprint]. 2025 [cited 2025 Feb 18]. Available from: https://arxiv.org/abs/2502.12524.