Document Type : Original Research
Authors
- Baharak Divband 1, 2, 3
- Amal Y. Al-Yasiri 4
- Najwan Mohammed Saeed 4
- Davood Khezerloo 1, 5
- Nahideh Gharehaghaji 1, 5
1 Medical Radiation Sciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
2 Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
3 Inorganic Chemistry Department, Chemistry Faculty, University of Tabriz, Tabriz, Iran
4 Department of Basic Sciences, College of Dentistry, University of Baghdad, Baghdad, Iraq
5 Department of Radiology, Faculty of Allied Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
Abstract
Background: Multifunctional nanosystems, containing medical imaging components and cancer therapeutic drugs, can provide early cancer diagnosis and treatment.
Objective: The aim of this study was to investigate Magnetic Resonance Imaging (MRI), anticancer drug delivery, and fluorescence properties of curcumin-loaded PEGylated magnetite@graphene quantum dots nanocomposite.
Material and Methods: In this experimental study, PEGylated magnetite@graphene quantum dots (Fe3O4@GQDs-PEG) nanocomposite was synthesized and loaded with curcumin (CUR-Fe3O4@GQDs-PEG). Then, the size, shape, magnetic property, MRI r2 relaxivity, drug loading and in vitro release, and fluorescence property of the nanocomposite were investigated. Evaluation of the cell toxicity against MCF-7 cells was performed for both unloaded and curcumin-loaded nanocomposites.
Results: The superparamagnetic nanocomposite showed high r2 relaxivity, drug release, and fluorescence property. The curcumin-loaded nanocomposite was significantly toxic to the breast cancer cell line at high concentrations.
Conclusion: CUR-Fe3O4@GQDs-PEG nanocomposite can be considered an anticancer drug carrier and an appropriate potential candidate for dual modal MRI and fluorescence imaging.
Highlights
Baharak Divband (Google Scholar)
Nahideh Gharehaghaji (Google Scholar)
Keywords
- Xuan Y, Gao Y, Guan M, Zhang S. Application of “smart” multifunctional nanoprobes in tumor diagnosis and treatment. J Mater Chem B. 2022;10(19):3601-13. doi: 10.1039/d2tb00326k. PubMed PMID: 35437560.
- Gharehaghaji N, Divband B, Bakhtiari-Asl F. Utilization of innovative hydroxyapatite-coated Gd2O3@ Bi2O3 nanocomposite as a bifunctional material for magnetic resonance imaging and computed tomography. 2020;10(4):909-16. doi: 10.1007/s12668-020-00787-1.
- Mastrogiacomo S, Dou W, Jansen JA, Walboomers XF. Magnetic Resonance Imaging of Hard Tissues and Hard Tissue Engineered Bio-substitutes. Mol Imaging Biol. 2019;21(6):1003-1019. doi: 10.1007/s11307-019-01345-2. PubMed PMID: 30989438.
- Liu L, Liu L, Pan Y, Wang S, He Y, Gong D, Zha Z. Multifunctional nanoprobes for the cancer cells pathophysiological processes sensing and imaging. Appl Mater Today. 2024;36:102028. doi: 10.1016/j.apmt.2023.102028.
- Oghabian MA, Guiti M, Haddad P, Gharehaghaji N, Saber R, Alam NR, et al. Detection sensitivity of MRI using ultra-small super paramagnetic iron oxide nano-particles (USPIO) in biological tissues. Conf Proc IEEE Eng Med Biol Soc. 2006;2006:5625-6. doi: 10.1109/IEMBS.2006.260131. PubMed PMID: 17945909.
- Barrow M, Taylor A, Murray P, Rosseinsky MJ, Adams DJ. Design considerations for the synthesis of polymer coated iron oxide nanoparticles for stem cell labelling and tracking using MRI. Chem Soc Rev. 2015;44(19):6733-48. doi: 10.1039/c5cs00331h. PubMed PMID: 26169237.
- Arosio P, Orsini F, Brero F, Mariani M, Innocenti C, Sangregorio C, Lascialfari A. The effect of size, shape, coating and functionalization on nuclear relaxation properties in iron oxide core-shell nanoparticles: a brief review of the situation. Dalton Trans. 2023;52(12):3551-62. doi: 10.1039/d2dt03387a. PubMed PMID: 36880505.
- Rahman M. Magnetic Resonance Imaging and Iron-oxide Nanoparticles in the era of Personalized Medicine. Nanotheranostics. 2023;7(4):424-49. doi: 10.7150/ntno.86467. PubMed PMID: 37650011. PubMed PMCID: PMC10464520.
- Kateb B, Chiu K, Black KL, Yamamoto V, Khalsa B, Ljubimova JY, et al. Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: what should be the policy? 2011;54(Suppl 1):S106-24. doi: 10.1016/j.neuroimage.2010.01.105. PubMed PMID: 20149882. PubMed PMCID: PMC3524337.
- Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. Polymers for drug delivery systems. Annu Rev Chem Biomol Eng. 2010;1:149-73. doi: 10.1146/annurev-chembioeng-073009-100847. PubMed PMID: 22432577. PubMed PMCID: PMC3438887.
- Shi L, Zhang J, Zhao M, Tang S, Cheng X, Zhang W, et al. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. 2021;13(24):10748-64. doi: 10.1039/d1nr02065j. PubMed PMID: 34132312.
- Meisel CL, Bainbridge P, Mulkern RV, Mitsouras D, Wong JY. Assessment of Superparamagnetic Iron Oxide Nanoparticle Poly(Ethylene Glycol) Coatings on Magnetic Resonance Relaxation for Early Disease Detection. IEEE Open J Eng Med Biol. 2020;1:116-22. doi: 10.1109/OJEMB.2020.2989468. PubMed PMID: 33294851. PubMed PMCID: PMC7720857.
- Ge J, Li C, Wang N, Zhang R, Afshari MJ, Chen C, et al. Effects of PEG Chain Length on Relaxometric Properties of Iron Oxide Nanoparticles-Based MRI Contrast Agent. Nanomaterials (Basel). 2022;12(15):2673. doi: 10.3390/nano12152673. PubMed PMID: 35957104. PubMed PMCID: PMC9370369.
- Kolate A, Baradia D, Patil S, Vhora I, Kore G, Misra A. PEG - a versatile conjugating ligand for drugs and drug delivery systems. J Control Release. 2014;192:67-81. doi: 10.1016/j.jconrel.2014.06.046. PubMed PMID: 24997275.
- Salem M, Rohani S, Gillies ER. Curcumin, a promising anti-cancer therapeutic: a review of its chemical properties, bioactivity and approaches to cancer cell delivery. RSC Adv. 2014;4(21):10815-29. doi: 10.1039/c3ra46396f.
- Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanomedicine: a road to cancer therapeutics. Curr Pharm Des. 2013;19(11):1994-2010. doi: 10.2174/138161213805289219. PubMed PMID: 23116309. PubMed PMCID: PMC3640558.
- Pourmadadi M, Abbasi P, Eshaghi MM, Bakhshi A, Manicum AL, Rahdar A, et al. Curcumin delivery and co-delivery based on nanomaterials as an effective approach for cancer therapy. J Drug Deliv Sci Technol. 2022;78:103982. doi: 10.1016/j.jddst.2022.103982.
- Moballegh Nasery M, Abadi B, Poormoghadam D, Zarrabi A, Keyhanvar P, Khanbabaei H, et al. Curcumin Delivery Mediated by Bio-Based Nanoparticles: A Review. 2020;25(3):689. doi: 10.3390/molecules25030689. PubMed PMID: 32041140. PubMed PMCID: PMC7037405.
- Balkanloo PG, Sharifi KM, Marjani AP. Graphene quantum dots: Synthesis, characterization, and application in wastewater treatment: A review. Mater Adv. 2023;4(19):4272-93. doi: 10.1039/D3MA00372H.
- Barati F, Avatefi M, Moghadam NB, Asghari S, Ekrami E, Mahmoudifard M. A review of graphene quantum dots and their potential biomedical applications. J Biomater Appl. 2023;37(7):1137-58. doi: 10.1177/08853282221125311. PubMed PMID: 36066191.
- Facure MH, Schneider R, Mercante LA, Correa DS. A review on graphene quantum dots and their nanocomposites: from laboratory synthesis towards agricultural and environmental applications. Environ Sci Nano. 2020;7(12):3710-34. doi: 10.1039/D0EN00787K.
- Hassani S, Gharehaghaji N, Divband B. Chitosan-coated iron oxide/graphene quantum dots as a potential multifunctional nanohybrid for bimodal magnetic resonance/fluorescence imaging and 5-fluorouracil delivery. Mater Today Commun. 2022;31:103589. doi: 10.1016/j.mtcomm.2022.103589.
- Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X, et al. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res. 2012;5(3):199-212. doi: 10.1007/s12274-012-0200-y.
- Chen W, Wen X, Zhen G, Zheng X. Assembly of Fe 3 O 4 nanoparticles on PEG-functionalized graphene oxide for efficient magnetic imaging and drug delivery. RSC Adv. 2015;5(85):69307-11. doi: 10.1039/C5RA09901C.
- Ramezani Farani M, Khadiv-Parsi P, Riazi GH, Shafiee Ardestani M, Saligheh Rad H. PEGylation of graphene/iron oxide nanocomposite: assessment of release of doxorubicin, magnetically targeted drug delivery and photothermal therapy. Appl Nanosci. 2020;10(4):1205-17. doi: 10.1007/s13204-020-01255-8.
- Abbasi R, Mostafavi Amjad J, Nosrati H, Mohammadkhani R, Danafar H. Synthesis and characterization of PEGylated iron and graphene oxide magnetic composite for curcumin delivery. Appl Organomet Chem. 2020;34(10):e5825. doi: 10.1002/aoc.5825.
- Pooresmaeil M, Namazi H. pH-sensitive ternary Fe3O4/GQDs@ G hybrid microspheres; Synthesis, characterization and drug delivery application. J Alloys Compd. 2020;846:156419. doi: 10.1016/j.jallcom.2020.156419.
- Nazarpoor M. Non-uniformity of clinical head, head and neck, and body coils in Magnetic Resonance Imaging (MRI). Iran J Med Phys. 2014;11(4):322-7. doi: 10.22038/ijmp.2014.3569.
- Gharehaghaji N, Divband B, Zareei L. Nanoparticulate NaA zeolite composites for MRI: Effect of iron oxide content on image contrast. J Magn Magn Mater. 2018;456:136-41. doi: 10.1016/j.jmmm.2018.02.013.
- Gharehaghaji N, Divband B. PEGylated Magnetite/Hydroxyapatite: A Green Nanocomposite for T2-Weighted MRI and Curcumin Carrying. Evid Based Complement Alternat Med. 2022;2022:1337588. doi: 10.1155/2022/1337588. PubMed PMID: 35722138. PubMed PMCID: PMC9201731.