Document Type: Original Research

Authors

1 MSc, Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

2 PhD, Department of Medical Physics and Radiology, Shahrekord University of Medical Sciences, Shahrekord, Iran

3 MD, Department of Radiation Oncology, Milad Hospital, Isfahan, Iran

4 PhD, Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract

Background: When using low-energy electron beams for the treatment of skin lesions, such as Mycosis Fungoides (MF), a beam spoiler is used to decrease electron therapeutic depth (R90) while increasing the surface dose.
Objective: The aim of this study was to evaluate the characteristics of a 5 MeV electron beam when using a spoiler for the local treatment of MF skin lesions by Monte Carlo (MC) simulation.
Material and Methods: In this experimental study, a Siemens Primus treatment head and an acrylic spoiler, positioned at the end of applicator, were simulated using BEAMnrc, an EGSnrc user code. The modelled beam was validated by measurement using MP3-M water tank, Roos parallel plate chamber and Semi flex Chamber-31013 (all from PTW, Freiburg, Germany). For different spoiler thicknesses, dose distributions in water were calculated for 2 field sizes and were compared to those for the corresponding open fields.
Results: For a 1.3 cm spoiler, therapeutic range changed from 1.5 cm (open field) to 0.5 cm and 0.4 cm for 10 × 10 cm2 and 20 × 20 cm2 field sizes, respectively. Maximum increase in penumbra width was 2.8 and 3.8 cm for 10 × 10 cm2 and 20 × 20 cm2 field sizes, respectively. Maximum increase in bremsstrahlung contamination was %2 in both field sizes.
Conclusion: R90 decreased exponentially with increase in spoiler thickness. The effect of field size on penumbra was much larger for spoiled beam compared to the open beam. The results of this research can be applied to optimize the radiation treatment of MF patients in our hospital.

Keywords

  1. Hogstrom KR, Almond PR. Review of electron beam therapy physics. Phys Med Biol. 2006;51:R455-89. doi: 10.1088/0031-9155/51/13/R25. PubMed PMID: 16790918.
  2. Khaledi N, Arbabi A, Sardari D, Mohammadi M, Ameri A. Simultaneous production of mixed electron--photon beam in a medical LINAC: A feasibility study. Phys Med. 2015;31:391-7. doi: 10.1016/j.ejmp.2015.02.014. PubMed PMID: 25773884.
  3. Rosenberg I. Radiation oncology physics: a handbook for teachers and students. British journal of cancer. 2008;98:1020. doi: 10.1038/sj.bjc.6604224. PubMed PMCID: 2266863.
  4. Khan FM, Gibbons JP. Khan’s the physics of radiation therapy: Lippincott Williams & Wilkins; 2014.
  5. Criscione VD, Weinstock MA. Incidence of cutaneous T-cell lymphoma in the United States, 1973-2002. Arch Dermatol. 2007;143:854-9. doi: 10.1001/archderm.143.7.854. PubMed PMID: 17638728.
  6. Kazmierska J. Clinical results of the total skin electron irradiation of the mycosis fungoides in adults. Conventional fractionation and low dose schemes. Rep Pract Oncol Radiother. 2014;19:99-103. doi: 10.1016/j.rpor.2013.08.008. PubMed PMID: 24936327. PubMed PMCID: 4054994.
  7. Parida DK, Rath GK. Advantages and implications of high dose rate (HDR) total skin electron irradiation (TSEI) for the management of Mycosis Fungoides. Indian experience. Rep Pract Oncol Radiother. 2014;19:104-8. do: 10.1016/j.rpor.2013.07.001. PubMed PMID: 24936328. PubMed PMCID: 4054997.
  8. Yahalom J, Illidge T, Specht L, Hoppe RT, Li YX, Tsang R, et al. Modern radiation therapy for extranodal lymphomas: field and dose guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys. 2015;92:11-31. doi: 10.1016/j.ijrobp.2015.01.009. PubMed PMID: 25863750.
  9. Kassaee A, Bloch P, Yorke E, Altschuler MD, Rosenthal DI. Beam spoilers versus bolus for 6 MV photon treatment of head and neck cancers. Med Dosim. 2000;25:127-31. doi: 10.1016/S0958-3947(00)00038-8. PubMed PMID: 11025258.
  10. Kang SK, Cho BC, Park SH, Park HC, Bae H, Kim JO, et al. Monte Carlo-based treatment planning for a spoiler system with experimental validation using plane-parallel ionization chambers. Phys Med Biol. 2004;49:5145-55. doi: 10.1088/0031-9155/49/22/009. PubMed PMID: 15609564.
  11. McKenzie AL. A simple method for matching electron beams in radiotherapy. Phys Med Biol. 1998;43:3465-78. doi: 10.1088/0031-9155/43/12/006. PubMed PMID: 9869025.
  12. Hernandez V, Sanchez-Reyes A, Badal A, Vila A, Mur E, Pedro A, et al. Use of an electron spoiler for radiation treatment of surface skin diseases. Clin Transl Oncol. 2010;12:374-80. doi: 10.1007/s12094-010-0519-3. PubMed PMID: 20466622.
  13. Park SY, Ahn BS, Park JM, Ye SJ, Kim IH, Kim JI. Dosimetric comparison of 4 MeV and 6 MeV electron beams for total skin irradiation. Radiat Oncol. 2014;9:197. doi: 10.1186/1748-717X-9-197. PubMed PMID: 25194217. PubMed PMCID: 4261910.
  14. Das IJ, Kase KR, Copeland JF, Fitzgerald TJ. Electron beam modifications for the treatment of superficial malignancies. Int J Radiat Oncol Biol Phys. 1991;21:1627-34. doi: 10.1016/0360-3016(91)90342-2. PubMed PMID: 1938573.
  15. Nygaard K, Odland OH, Kvinnsland Y, Nygaard B, Heggdal J, Muren LP. Measurements and treatment planning calculations of electron dose distributions below bolus edges. Radiother Oncol. 2005;74:217-20. doi: 10.1016/j.radonc.2004.12.014. PubMed PMID: 15734210.
  16. Wieslander E. Verification of dose calculation algorithms in treatment planning systems for external radiation therapy: a Monte Carlo approach: Medical Radiation Physics, Lund University; 2006.
  17. Jabbari N, Hashemi-Malayeri B. Monte Carlo modeling of electron beams from a NEPTUN 10PC medical linear accelerator. Nukleonika. 2009;54:233-8.
  18. Khan FM, Doppke KP, Hogstrom KR, Kutcher GJ, Nath R, Prasad SC, et al. Clinical electron-beam dosimetry: report of AAPM Radiation Therapy Committee Task Group No. 25. Med Phys. 1991;18:73-109. doi: 10.1118/1.596695. PubMed PMID: 1901132.
  19. Burns DT, Ding GX, Rogers DW. R50 as a beam quality specifier for selecting stopping-power ratios and reference depths for electron dosimetry. Med Phys. 1996;23:383-8. doi: 10.1118/1.597893. PubMed PMID: 8815381.
  20. Healy BJ, Padmanabhan P, Nitschke KN. Tin foil as bolus material for therapeutic electron beams from the Varian Clinac 2100C/D. Australas Phys Eng Sci Med. 2005;28:8-13. doi: 10.1007/BF03178858. PubMed PMID: 15920984.