Document Type : Original Research

Authors

1 Health Information Management Research Center, Kashan University of Medical Sciences, Kashan, Iran

2 Department of Health Information Management and Technology, Allied Medical Sciences Faculty, Kashan University of Medical Sciences, Kashan, Iran

3 Department of Medical Informatics, School of Allied Medical Sciences Shahid Beheshti University of Medical Sciences, Tehran, Iran

4 Trauma Research Center, Kashan University of Medical Sciences, Kashan, Iran

5 DigiHealth Institute, Neu-Ulm University of Applied Sciences, Neu-Ulm, Germany

6 Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig Maximilian University of Munich, Munich, Germany

10.31661/jbpe.v0i0.2308-1654

Abstract

Background: By analyzing information from trauma centers, hospitals can identify crucial performance indicators that affect budgets and present growth opportunities, potentially leading to lower mortality rates and improved health status indicators.
Objective: This study aims to determine the best-supervised algorithm for diagnosing the discharge status of trauma patients.
Material and Methods: This retrospective study used the data, collected by the Kashan Trauma Registry from March 2018 to February 2019. Several supervised algorithms, including Naive Bayes, Logistic Regression, Support Vector Machine, Random Forest, and K-Nearest Neighbors, have been evaluated for predicting the discharge status of trauma patients. The performance metrics of accuracy, precision, recall, and F-measure were used. The hold-out technique was applied to train the data.
Results: The Random Forest algorithm had the best performance among the other algorithms. The best accuracy, precision, recall, and F-measure for Gini index were 84/2%, 79/7%, 78/3%, and 76.4%, and for information gain were 84.6%, 79.6%, 76.8%, and 76/20%, respectively. 
Conclusion: The results of this research showed that the supervised algorithms, with proper parameter settings, can help diagnose the discharge status of trauma patients. In addition, data balancing can help improve the performance of the algorithms. However, this claim cannot be generalized because it depends on the type of algorithm and the values of the parameters.

Keywords

  1. Injuries and violence. World Health Organization; 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/injuries-and-violence.
  2. Preventing injuries and violence: an overview. World Health Organization; 2022. Available from: https://www.who.int/publications/i/item/9789240047136.
  3. Based on the WHO Global Status Report on Road Safety 2018. World Health Organization; 2018. Available from: https://extranet.who.int/roadsafety/death-on-the-roads/#trends/deaths.
  4. Global Status Report on Alcohol and Health 2018. World Health Organization; 2018. Available from: https://www.who.int/publications/i/item/9789241565639.
  5. Narula N, Tsikis S, Jinadasa SP, Parsons CS, Cook CH, Butt B, Odom SR. The Effect of Anticoagulation and Antiplatelet Use in Trauma Patients on Mortality and Length of Stay. Am Surg. 2022;88(6):1137-45. doi: 10.1177/0003134821989043. PubMed PMID: 33522831.
  6. Elkbuli A, Sutherland M, Gargano T, Kinslow K, Liu H, McKenney M, Ang D. Race and Insurance Status Disparities in Post-discharge Disposition After Hospitalization for Major Trauma. Am Surg. 2023;89(3):379-89. doi: 10.1177/00031348211029864. PubMed PMID: 34176320.
  7. Knauf T, Buecking B, Geiger L, Hack J, Schwenzfeur R, Knobe M, et al. The Predictive Value of the “Identification of Seniors at Risk” Score on Mortality, Length of Stay, Mobility and the Destination of Discharge of Geriatric Hip Fracture Patients. Clin Interv Aging. 2022;17:309-16. doi: 10.2147/CIA.S344689. PubMed PMID: 35386750. PubMed PMCID: PMC8979564.
  8. Strosberg DS, Housley BC, Vazquez D, Rushing A, Steinberg S, Jones C. Discharge destination and readmission rates in older trauma patients. J Surg Res. 2017;207:27-32. doi: 10.1016/j.jss.2016.07.015. PubMed PMID: 27979485.
  9. Guidelines for trauma quality improvement programmes. World Health Organization; 2009. Available from: https://www.who.int/publications/i/item/guidelines-for-trauma-quality-improvement-programmes.
  10. Mock C, Nguyen S, Quansah R, Arreola-Risa C, Viradia R, Joshipura M. Evaluation of Trauma Care capabilities in four countries using the WHO-IATSIC Guidelines for Essential Trauma Care. World J Surg. 2006;30(6):946-56. doi: 10.1007/s00268-005-0768-4. PubMed PMID: 16736320.
  11. Varghese DP, Tintu PB. A survey on health data using data mining techniques. International Research Journal of Engineering and Technology (IRJET). 2015;2(7):713-20.
  12. Ogundele IO, Popoola OL, Oyesola OO, Orija KT. A review on data mining in healthcare. International Journal of Advanced Research in Computer Engineering and Technology (IJARCET). 2018;7:698-704.
  13. Garcia-Carretero R, Vigil-Medina L, Mora-Jimenez I, Soguero-Ruiz C, Barquero-Perez O, Ramos-Lopez J. Use of a K-nearest neighbors model to predict the development of type 2 diabetes within 2 years in an obese, hypertensive population. Med Biol Eng Comput. 2020;58(5):991-1002. doi: 10.1007/s11517-020-02132-w. PubMed PMID: 32100174.
  14. Eedi H, Kolla M. Machine learning approaches for healthcare data analysis. J Crit Rev. 2020;7(4):806-11. doi: 10.31838/jcr.07.04.149.
  15. Induja SN, Raji CG. Computational methods for predicting chronic disease in healthcare communities. In: 2019 International Conference on Data Science and Communication (IconDSC); Bangalore, India: IEEE; 2019. p. 1-6.
  16. Ahmad I, Ullah I, Khan WU, Ur Rehman A, Adrees MS, Saleem MQ, et al. Efficient algorithms for E-healthcare to solve multiobject fuse detection problem. J Healthc Eng. 2021;2021:1-6. doi: 10.1155/2021/9500304.
  17. Zubair M, Asif Iqbal MD, Shil A, Haque E, Moshiul Hoque M, Sarker IH. An efficient k-means clustering algorithm for analysing covid-19. In: Hybrid Intelligent Systems: International Conference on Hybrid Intelligent Systems (HIS 2020); Springer, Cham; 2020. p. 422-32.
  18. Gesicho MB, Were MC, Babic A. Evaluating performance of health care facilities at meeting HIV-indicator reporting requirements in Kenya: an application of K-means clustering algorithm. BMC Med Inform Decis Mak. 2021;21(1):6. doi: 10.1186/s12911-020-01367-9. PubMed PMID: 33407380. PubMed PMCID: PMC7789797.
  19. Guo X, Lin H, Wu Y, Peng M. A new data clustering strategy for enhancing mutual privacy in healthcare IoT systems. Future Gener Comput Syst. 2020;113:407-17. doi: 10.1016/j.future.2020.07.023.
  20. Bruschetta R, Tartarisco G, Lucca LF, Leto E, Ursino M, Tonin P, et al. Predicting Outcome of Traumatic Brain Injury: Is Machine Learning the Best Way? 2022;10(3):686. doi: 10.3390/biomedicines10030686. PubMed PMID: 35327488. PubMed PMCID: PMC8945356.
  21. Kuo PJ, Wu SC, Chien PC, Rau CS, Chen YC, Hsieh HY, Hsieh CH. Derivation and validation of different machine-learning models in mortality prediction of trauma in motorcycle riders: a cross-sectional retrospective study in southern Taiwan. BMJ Open. 2018;8(1):e018252. doi: 10.1136/bmjopen-2017-018252. PubMed PMID: 29306885. PubMed PMCID: PMC5781097.
  22. Feng JZ, Wang Y, Peng J, Sun MW, Zeng J, Jiang H. Comparison between logistic regression and machine learning algorithms on survival prediction of traumatic brain injuries. J Crit Care. 2019;54:110-6. doi: 10.1016/j.jcrc.2019.08.010. PubMed PMID: 31408805.
  23. Wang R, Zeng X, Long Y, Zhang J, Bo H, He M, Xu J. Prediction of Mortality in Geriatric Traumatic Brain Injury Patients Using Machine Learning Algorithms. Brain Sci. 2023;13(1):94. doi: 10.3390/brainsci13010094. PubMed PMID: 36672075. PubMed PMCID: PMC9857144.
  24. Rau CS, Kuo PJ, Chien PC, Huang CY, Hsieh HY, Hsieh CH. Mortality prediction in patients with isolated moderate and severe traumatic brain injury using machine learning models. PLoS One. 2018;13(11):e0207192. doi: 10.1371/journal.pone.0207192. PubMed PMID: 30412613. PubMed PMCID: PMC6226171.
  25. Stoitsas K, Bahulikar S, De Munter L, De Jongh MAC, Jansen MAC, Jung MM, et al. Clustering of trauma patients based on longitudinal data and the application of machine learning to predict recovery. Sci Rep. 2022;12(1):16990. doi: 10.1038/s41598-022-21390-2. PubMed PMID: 36216874. PubMed PMCID: PMC9550811.
  26. Jalali A, Lonsdale H, Zamora LV, Ahumada L, Nguyen ATH, Rehman M, et al. Machine Learning Applied to Registry Data: Development of a Patient-Specific Prediction Model for Blood Transfusion Requirements During Craniofacial Surgery Using the Pediatric Craniofacial Perioperative Registry Dataset. Anesth Analg. 2021;132(1):160-71. doi: 10.1213/ANE.0000000000004988. PubMed PMID: 32618624.
  27. Doucet JJ, Godat LN, Berndtson AE, Liepert AE, Weaver JL, Smith AM, et al. Youth violence prevention can be enhanced by geospatial analysis of trauma registry data. J Trauma Acute Care Surg. 2022;93(4):482-7. doi: 10.1097/TA.0000000000003609. PubMed PMID: 35343924.
  28. Abujaber A, Fadlalla A, Gammoh D, Abdelrahman H, Mollazehi M, El-Menyar A. Using trauma registry data to predict prolonged mechanical ventilation in patients with traumatic brain injury: Machine learning approach. PLoS One. 2020;15(7):e0235231. doi: 10.1371/journal.pone.0235231. PubMed PMID: 32639971. PubMed PMCID: PMC7343348.
  29. Karandikar P, Massaad E, Hadzipasic M, Kiapour A, Joshi RS, Shankar GM, Shin JH. Machine Learning Applications of Surgical Imaging for the Diagnosis and Treatment of Spine Disorders: Current State of the Art. 2022;90(4):372-82. doi: 10.1227/NEU.0000000000001853. PubMed PMID: 35107085.
  30. Alloghani M, Al-Jumeily D, Mustafina J, Hussain A, Aljaaf AJ. A systematic review on supervised and unsupervised machine learning algorithms for data science. In: Supervised and Unsupervised Learning for Data Science. Springer, Cham; 2020. p: 3-21.
  31. Muhammad I, Yan Z. Supervised Machine Learning Approaches: A Survey. ICTACT J Soft Comput. 2015;5(3):946-52. doi: 10.21917/ijsc.2015.0133.
  32. Cortes C, Vapnik V. Support vector machine. Machine Learning. 1995;20(3):273-97.
  33. Hastie T, Tibshirani R, Friedman JH, Friedman JH. The elements of statistical learning: data mining, inference, and prediction. New York: Springer; 2009.
  34. Hackeling G. Mastering Machine Learning with scikit-learn. Packt Publishing Ltd; 2017.
  35. Alpaydin E. Introduction to machine learning. 3rd ed: The MIT Press; 2020.
  36. Brownlee J. Probability for machine learning: Discover how to harness uncertainty with Python. Machine Learning Mastery; 2019.
  37. Pampel FC. Logistic regression: A primer. Second ed. Sage; 2020.
  38. Menard S. Logistic regression: From introductory to advanced concepts and applications. Sage; 2010.
  39. Breiman L. Random forests. Machine Learning. 2001;45:5-32. doi: 10.1023/A:1010933404324.
  40. Cutler A, Cutler DR, Stevens JR. Random forests. In: Ensemble machine learning: Methods applications. New York, NY: Springer; 2012. p. 157-75.
  41. Kaur G, Kaur V, Sharma Y, Bansal V. Analyzing various Machine Learning Algorithms with SMOTE and ADASYN for Image Classification having Imbalanced Data. In: International Conference on Current Development in Engineering and Technology (CCET); Bhopal, India: IEEE; 2022. p. 1-7.
  42. Fernández A, Garcia S, Herrera F, Chawla NV. SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary. J Artif Intell Res. 2018;61:863-905. doi: 10.1613/jair.1.11192.
  43. Dowlagar S, Mamidi R. DepressionOne@ LT-EDI-ACL2022: Using Machine Learning with SMOTE and Random UnderSampling to Detect Signs of Depression on Social Media Text. In: Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion; LTEDI; 2022. p. 301-5.
  44. Bishop CM, Nasrabadi NM. Pattern recognition and machine learning. New York: Springer; 2006.
  45. Witten IH, Frank E. Data mining: practical machine learning tools and techniques. Elsevier; 2002.
  46. Abujaber A, Fadlalla A, Gammoh D, Abdelrahman H, Mollazehi M, El-Menyar A. Prediction of in-hospital mortality in patients with post traumatic brain injury using National Trauma Registry and Machine Learning Approach. Scand J Trauma Resusc Emerg Med. 2020;28(1):44. doi: 10.1186/s13049-020-00738-5. PubMed PMID: 32460867. PubMed PMCID: PMC7251921.
  47. Matsuo K, Aihara H, Nakai T, Morishita A, Tohma Y, Kohmura E. Machine Learning to Predict In-Hospital Morbidity and Mortality after Traumatic Brain Injury. J Neurotrauma. 2020;37(1):202-10. doi: 10.1089/neu.2018.6276. PubMed PMID: 31359814.