Document Type : Original Research
Authors
- Tawfikur Rahman 1
- Rasel Ahommed 1
- Nibedita Deb 2
- Utpal Kanti Das 3
- Md. Moniruzzaman 1
- Md. Alamgir Bhuiyan 3
- Farzana Sultana 1
- Md. Kamruzzaman Kausar 1
1 Department of Electrical and Electronic Engineering, Faculty of Engineering, International University of Business Agriculture and Technology, Uttara, Dhaka 1230, Bangladesh
2 Department of Agriculture, International University of Business Agriculture and Technology, Uttara, Dhaka 1230, Bangladesh
3 Department of Computer Science and Engineering, Faculty of Engineering, International University of Business Agriculture and Technology, Uttara, Dhaka 1230, Bangladesh
Abstract
Background: Cardiovascular Diseases (CVD) requires precise and efficient diagnostic tools. The manual analysis of Electrocardiograms (ECGs) is labor-intensive, necessitating the development of automated methods to enhance diagnostic accuracy and efficiency.
Objective: This research aimed to develop an automated ECG classification using Continuous Wavelet Transform (CWT) and Deep Convolutional Neural Network (DCNN), and transform 1D ECG signals into 2D spectrograms using CWT and train a DCNN to accurately detect abnormalities associated with CVD. The DCNN is trained on datasets from PhysioNet and the MIT-BIH arrhythmia dataset. The integrated CWT and DCNN enable simultaneous classification of multiple ECG abnormalities alongside normal signals.
Material and Methods: This analytical observational research employed CWT to generate spectrograms from 1D ECG signals, as input to a DCNN trained on diverse datasets. The model is evaluated using performance metrics, such as precision, specificity, recall, overall accuracy, and F1-score.
Results: The proposed algorithm demonstrates remarkable performance metrics with a precision of 100% for normal signals, an average specificity of 100%, an average recall of 97.65%, an average overall accuracy of 98.67%, and an average F1-score of 98.81%. This model achieves an approximate average overall accuracy of 98.67%, highlighting its effectiveness in detecting CVD.
Conclusion: The integration of CWT and DCNN in ECG classification improves accuracy and classification capabilities, addressing the challenges with manual analysis. This algorithm can reduce misdiagnoses in primary care and enhance efficiency in larger medical institutions. By contributing to automated diagnostic tools for cardiovascular disorders, it can significantly improve healthcare practices in the field of CVD detection.
Highlights
Tawfikur Rahman (Google Scholar)
Keywords
- Rajamhoana SP, Devi CA, Umamaheswari K, Kiruba R, Karunya K, Deepika R. Analysis of neural networks based heart disease prediction system. 11th international conference on human system interaction (HSI); Gdansk, Poland: IEEE; 2018. p. 233-9.
- Balamurugan R, Ratheesh S, Venila YM. Classification of heart disease using adaptive Harris hawk optimization-based clustering algorithm and enhanced deep genetic algorithm. Soft Computing. 2022;26(5):2357-73. doi: 10.1007/s00500-021-06536-0.
- Olanrewaju RF, Ibrahim SN, Asnawi AL, Altaf H. Classification of ECG signals for detection of arrhythmia and congestive heart failure based on continuous wavelet transform and deep neural networks. Indonesian Journal of Electrical Engineering and Computer Science. 2021;22(3):1520-8. doi: 10.11591/ijeecs.v22.i3.pp1520-1528.
- Pashoutan S, Baradaran Shokouhi S. Reconstructed State Space Features for Classification of ECG Signals. J Biomed Phys Eng. 2021;11(4):535-50. doi: 10.31661/jbpe.v0i0.1112. PubMed PMID: 34458201. PubMed PMCID: PMC8385217.
- Rashed-Al-Mahfuz M, Moni MA, Lio’ P, Islam SMS, Berkovsky S, Khushi M, Quinn JMW. Deep convolutional neural networks based ECG beats classification to diagnose cardiovascular conditions. Biomed Eng Lett. 2021;11(2):147-62. doi: 10.1007/s13534-021-00185-w. PubMed PMID: 34150350. PubMed PMCID: PMC8155180.
- Gutiérrez-Gnecchi JA, Morfin-Magana R, Lorias-Espinoza D, Del Carmen Tellez-Anguiano A, et al. DSP-based arrhythmia classification using wavelet transform and probabilistic neural network. Biomedical Signal Processing and Control. 2017;32:44-56. doi: 10.1016/j.bspc.2016.10.005.
- Nurmaini S, Umi Partan R, Caesarendra W, Dewi T, Naufal Rahmatullah M, Darmawahyuni A, Bhayyu V, Firdaus F. An automated ECG beat classification system using deep neural networks with an unsupervised feature extraction technique. Appl Sci. 2019;9(14):2921. doi: 10.3390/app9142921.
- Mazidi MH, Eshghi M, Raoufy MR. Premature Ventricular Contraction (PVC) Detection System Based on Tunable Q-Factor Wavelet Transform. J Biomed Phys Eng. 2022;12(1):61-74. doi: 10.31661/jbpe.v0i0.1235. PubMed PMID: 35155294. PubMed PMCID: PMC8819265.
- Yıldırım Ö, Pławiak P, Tan RS, Acharya UR. Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput Biol Med. 2018;102:411-20. doi: 10.1016/j.compbiomed.2018.09.009. PubMed PMID: 30245122.
- Izci E, Ozdemir MA, Degirmenci M, Akan A. Cardiac arrhythmia detection from 2d ecg images by using deep learning technique. 2019 medical technologies congress (TIPTEKNO); Izmir, Turkey: IEEE; 2019. p. 1-4.
- Wang T, Lu C, Sun Y, Yang M, Liu C, Ou C. Automatic ECG Classification Using Continuous Wavelet Transform and Convolutional Neural Network. Entropy (Basel). 2021;23(1):119. doi: 10.3390/e23010119. PubMed PMID: 33477566. PubMed PMCID: PMC7831114.
- Japkowicz N. Learning from imbalanced data sets: a comparison of various strategies. In AAAI workshop on learning from imbalanced data sets; Menlo Park: AAAI Press; 2000. p. 10-15.
- Zhao Z, Liu C, Li Y, Li Y, Wang J, Lin BS, Li J. Noise rejection for wearable ECGs using modified frequency slice wavelet transform and convolutional neural networks. IEEE Access. 2019;7:34060-7. doi: 10.1109/ACCESS.2019.2900719.
- Acharya UR, Fujita H, Oh SL, Hagiwara Y, Tan JH, Adam M. Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Information Sciences. 2017;415:190-8. doi: 10.1016/j.ins.2017.06.027.
- AL-Bayati MD, Mohammed DY, Sarfraz M. A Novel Approach for ECG Classification Using Probability Continuous Wavelet Transform and Alexnet-Deep Neural Network. International Journal of Intelligent Engineering & Systems. 2022;15(2):307-15. doi: 10.22266/ijies2022.0430.28.
- Zhang X, Gu K, Miao S, Zhang X, Yin Y, Wan C, et al. Automated detection of cardiovascular disease by electrocardiogram signal analysis: a deep learning system. Cardiovasc Diagn Ther. 2020;10(2):227-35. doi: 10.21037/cdt.2019.12.10. PubMed PMID: 32420103. PubMed PMCID: PMC7225435.
- Radhakrishnan T, Karhade J, Ghosh SK, Muduli PR, Tripathy RK, Acharya UR. AFCNNet: Automated detection of AF using chirplet transform and deep convolutional bidirectional long short term memory network with ECG signals. Comput Biol Med. 2021;137:104783. doi: 10.1016/j.compbiomed.2021.104783. PubMed PMID: 34481184.
- Mollakazemi MJ, Asadi F, Tajnesaei M, Ghaffari A. Fetal QRS Detection in Noninvasive Abdominal Electrocardiograms Using Principal Component Analysis and Discrete Wavelet Transforms with Signal Quality Estimation. J Biomed Phys Eng. 2021;11(2):197-204. doi: 10.31661/jbpe.v0i0.397. PubMed PMID: 33945588. PubMed PMCID: PMC8064132.
- Jun TJ, Nguyen HM, Kang D, Kim D, Kim D, Kim YH. ECG arrhythmia classification using a 2-D convolutional neural network [Internet]. arXiv [Preprint]. 2018. [cited 2018 Apr 18]. Available from: https://arxiv.org/abs/1804.06812.
- Boda S, Mahadevappa M, Dutta PK. An automated patient-specific ECG beat classification using LSTM-based recurrent neural networks. Biomedical Signal Processing and Control. 2023;84:104756. doi: 10.1016/j.bspc.2023.104756.
- Ashtiyani M, Navaei Lavasani S, Asgharzadeh Alvar A, Deevband MR. Heart Rate Variability Classification using Support Vector Machine and Genetic Algorithm. J Biomed Phys Eng. 2018;8(4):423-34. doi: 10.31661/jbpe.v0i0.614. PubMed PMID: 30568932. PubMed PMCID: PMC6280110.
- Kiranyaz S, Ince T, Gabbouj M. Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks. IEEE Trans Biomed Eng. 2016;63(3):664-75. doi: 10.1109/TBME.2015.2468589. PubMed PMID: 26285054.
- Ince T, Kiranyaz S, Eren L, Askar M, Gabbouj M. Real-time motor fault detection by 1-D convolutional neural networks. IEEE Transactions on Industrial Electronics. 2016;63(11):7067-75. doi: 10.1109/TIE.2016.2582729.
- Gaddam PG, Sreehari RV. Automatic classification of cardiac arrhythmias based on ECG signals using transferred deep learning convolution neural network. J Phys: Conf Ser. 2021;2089(1):012058. doi:10.1088/1742-6596/2089/1/012058.
- Daydulo YD, Thamineni BL, Dawud AA. Cardiac arrhythmia detection using deep learning approach and time frequency representation of ECG signals. BMC Med Inform Decis Mak. 2023;23(1):232. doi: 10.1186/s12911-023-02326-w. PubMed PMID: 37858107. PubMed PMCID: PMC10588016.