Document Type : Original Research
Authors
1 Department of Electrical Engineering, Shiraz University of Technology, Shiraz, Iran
2 Laboratory of Functional Neuroscience and Pathologies (UR UPJV 4559), University Research Center, University Hospital, Amiens, France
3 Faculty of Medicine, University of Picardy Jules Verne, Amiens, France
Abstract
Background: Driver fatigue detection is crucial for traffic safety. Electroencephalography (EEG) signals, which directly reflect the human mental state, provide a reliable approach for identifying fatigue.
Objective: This study aimed to investigate the effectiveness of EEG microstate analysis in detecting driver fatigue by analyzing variations in microstate features between normal and fatigued states.
Material and Methods: This analytical study aimed to develop a supervised machine learning approach for driver fatigue detection using EEG microstate features. EEG data were collected from 10 individuals in both normal and fatigued states. Microstate analysis was performed to extract key features, including duration, occurrence, coverage, and Microstate Mean Power (MMP), from four types of microstates labeled A, B, C, and D. These features were then used as inputs to train and test a Support Vector Machine (SVM) for classifying each EEG segment into either normal state or fatigue state.
Results: The classification achieved high accuracy, particularly when combining MMP and occurrence features. The highest accuracy recorded was 98.77%.
Conclusion: EEG microstate analysis, in combination with SVM, proves to be an effective method for detecting driver fatigue. This approach can be utilized for real-time driver monitoring and fatigue alert systems, enhancing road safety.
Highlights
Kamran Kazemi (Google Scholar)
Keywords
- Guo F, Zhou Y, Wang X, Li W, Cai J. Literature review of driving fatigue research based on bibliometric analysis. J Traffic and Transportation Engineering (English Edition). 2024;11(6):1401-19. doi: 10.1016/j.jtte.2024.03.005.
- Fu S, Yang Z, Ma Y, Li Z, Xu L, Zhou H. Advancements in the intelligent detection of driver fatigue and distraction: A comprehensive review. J Appl Sci. 2024;14(7):3016. doi: 10.3390/app14073016.
- Othmani A, Sabri AQ, Aslan S, Chaieb F, Rameh H, Alfred R, Cohen D. EEG-based neural networks approaches for fatigue and drowsiness detection: A survey. 2023;557:126709. doi: 10.1016/j.neucom.2023.126709.
- Stancin I, Cifrek M, Jovic A. A Review of EEG Signal Features and their Application in Driver Drowsiness Detection Systems. Sensors (Basel). 2021;21(11):3786. doi: 10.3390/s21113786. PubMed PMID: 34070732. PubMed PMCID: PMC8198610.
- Imran MAA, Nasirzadeh F, Karmakar C. Designing a practical fatigue detection system: A review on recent developments and challenges. J Safety Res. 2024;90:100-14. doi: 10.1016/j.jsr.2024.05.015. PubMed PMID: 39251269.
- Ardabili SZ, Bahmani S, Lahijan LZ, Khaleghi N, Sheykhivand S, Danishvar S. A Novel Approach for Automatic Detection of Driver Fatigue Using EEG Signals Based on Graph Convolutional Networks. Sensors (Basel). 2024;24(2):364. doi: 10.3390/s24020364. PubMed PMID: 38257457. PubMed PMCID: PMC10819416.
- Min J, Wang P, Hu J. Driver fatigue detection through multiple entropy fusion analysis in an EEG-based system. PLoS One. 2017;12(12):e0188756. doi: 10.1371/journal.pone.0188756. PubMed PMID: 29220351. PubMed PMCID: PMC5722287.
- Michel CM, Koenig T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. 2018;180(Pt B):577-93. doi: 10.1016/j.neuroimage.2017.11.062. PubMed PMID: 29196270.
- Lehmann D, Strik WK, Henggeler B, Koenig T, Koukkou M. Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts. Int J Psychophysiol. 1998;29(1):1-11. doi: 10.1016/s0167-8760(97)00098-6. PubMed PMID: 9641243.
- Baldini S, Sartori A, Rossi L, Favero A, Pasquin F, Dinoto A, et al. Fatigue in Multiple Sclerosis: A Resting-State EEG Microstate Study. Brain Topogr. 2024;37(6):1203-16. doi: 10.1007/s10548-024-01053-3. PubMed PMID: 38847997. PubMed PMCID: PMC11408556.
- Li W, Cheng S, Wang H, Chang Y. EEG microstate changes according to mental fatigue induced by aircraft piloting simulation: An exploratory study. Behav Brain Res. 2023;438:114203. doi: 10.1016/j.bbr.2022.114203. PubMed PMID: 36356722.
- Hua W, Li Y. Electroencephalography Based Microstate Functional Connectivity Analysis in Emotional Cognitive Reappraisal Combined with Happy Music. Brain Sci. 2023;13(4):554. doi: 10.3390/brainsci13040554. PubMed PMID: 37190519. PubMed PMCID: PMC10136627.
- Guan K, Zhang Z, Chai X, Tian Z, Liu T, Niu H. EEG Based Dynamic Functional Connectivity Analysis in Mental Workload Tasks With Different Types of Information. IEEE Trans Neural Syst Rehabil Eng. 2022;30:632-42. doi: 10.1109/TNSRE.2022.3156546. PubMed PMID: 35239485.
- Hu W, Zhang Z, Zhao H, Zhang L, Li L, Huang G, Liang Z. EEG microstate correlates of emotion dynamics and stimulation content during video watching. Cereb Cortex. 2023;33(3):523-42. doi: 10.1093/cercor/bhac082. PubMed PMID: 35262653.
- Kim K, Duc NT, Choi M, Lee B. EEG microstate features for schizophrenia classification. PLoS One. 2021;16(5):e0251842. doi: 10.1371/journal.pone.0251842. PubMed PMID: 33989352. PubMed PMCID: PMC8121321.
- Nagabhushan Kalburgi S, Kleinert T, Aryan D, Nash K, Schiller B, Koenig T. MICROSTATELAB: The EEGLAB Toolbox for Resting-State Microstate Analysis. Brain Topogr. 2024;37(4):621-45. doi: 10.1007/s10548-023-01003-5. PubMed PMID: 37697212. PubMed PMCID: PMC11199309.
- Chen J, Zhao Z, Shu Q, Cai G. Feature extraction based on microstate sequences for EEG-based emotion recognition. Front Psychol. 2022;13:1065196. doi: 10.3389/fpsyg.2022.1065196. PubMed PMID: 36619090. PubMed PMCID: PMC9816384.
- Apicella A, Isgrò F, Pollastro A, Prevete R. On the effects of data normalization for domain adaptation on EEG data. J Eng Appl Artif Intell. 2023;123:106205. doi: 10.1016/j.engappai.2023.106205.
- Gao Z, Li S, Cai Q, Dang W, Yang Y, Mu C, Hui P. Relative wavelet entropy complex network for improving EEG-based fatigue driving classification. J IEEE Trans Instrum Meas. 2018;68(7):2491-7. doi: 10.1109/TIM.2018.2865842.
- Chen J, Wang H, Wang Q, Hua C. Exploring the fatigue affecting electroencephalography based functional brain networks during real driving in young males. 2019;129:200-11. doi: 10.1016/j.neuropsychologia.2019.04.004. PubMed PMID: 30995455.
- Luo H, Qiu T, Liu C, Huang P. Research on fatigue driving detection using forehead EEG based on adaptive multi-scale entropy. J Biomed Signal Process Control. 2019;51(3):50-8. doi: 10.1016/j.bspc.2019.02.005.
- Ren Z, Li R, Chen B, Zhang H, Ma Y, Wang C, Lin Y, Zhang Y. EEG-Based Driving Fatigue Detection Using a Two-Level Learning Hierarchy Radial Basis Function. Front Neurorobot. 2021;15:618408. doi: 10.3389/fnbot.2021.618408. PubMed PMID: 33643018. PubMed PMCID: PMC7905350.
- Gao D, Tang X, Wan M, Huang G, Zhang Y. EEG driving fatigue detection based on log-Mel spectrogram and convolutional recurrent neural networks. Front Neurosci. 2023;17:1136609. doi: 10.3389/fnins.2023.1136609. PubMed PMID: 36968502. PubMed PMCID: PMC10033857.